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KONSTANTIN EDUARDOVICH TSIOLKOVSKIY, A PASSTIONATE
CRUSADER FOR A RELIABLE TRANSPORT DIRIGIBLE

by

Honored Activist of Science and Engineering,RSFSR,
Dr. Techn. Sci. Professor V. A. Semenov

Tn the second half of the nineteenth century mankind, in its
struggle for mastery of the air, placed its greatest hopes in the
dirigible.

Dmitriy Ivanovich Mendeleyev, oneé of the greatest Russian men
of science of the time, was confident of the rapid development of
heavier-than-air flying machines. Though he considered that human
understanding of these machines (“aerodynamos") was "still rudimen-
tary, on a scale incommensurate with our needs," nevertheless, he
expressed the opinion that "this kind of aeronaubics promises to
heve the greatest future and to cost the least and is, so to speak,
conditioned by nature itself, since virds are heavier than air and
hence aerodynamos."* But while asserting that the future belonged
to aircraft, Mendeleyev did not recommend abandoning the possibilities
of the present; with the potentials of his time 1in mind, he de-
clared: "Only aserostats promise to yield quick and concrete re-
sults, the more SO as in thelr case the main outlines of the whole
problem are perfectly clear from the theoretical standpoint. It 1s
for this reason that priority shapld be given to extensive practical
experiments with a properly designed aerostat.

Without being frivolous or visionary, T can state with full
assurance that a large aerostat can be just as maneuverable as a

s ——

sprom a letter by D. I. Mendeleyev to the Ministry of War in 1878.
The D. I. Mendeleyev Archival Museum.



ship."#

K. E. Tsiolkovskiy's views on controlled flight were in
complete accord with those of Mendeleyev.

Tsiolkovskiy, in elaborating his ides of a safe dirigible,
Critically examinegd all the known attempts at dirigible design and

dirigible would revolutionize human culture and economic life in his
youth, He realized, however, that the society of his time and ,

competence, until he could win recognition from the scientific worild.
Otherwise, he would get no help in solving the problems that interest-
ed him, and,as a mere unknown, would be treated with the deepest mig-
trust. '

As 1is clear from various autobiographical notes, Tsiolkovskiy
also realized that in his time the road was open only to wealthy
and influential people, whereas he himself was both poverty-stricken
and obscure and, moreover, handicapped by the deafness, which de-
prived him of the Opportunity of obtaining an education by the
normsl practice of attending school and college. Thus, the only
bath he could follow was to advance himselr by his own scientific
labors, to strive for acceptance of the idea of the all-metal
dirigible by bresenting irrefutable scientific conc lusions and, in
this way, to work for Tecognition of the valye and necessity of

building glant vehicles of this kin®. Wwhile bursuing his investiga-
tions of the Possibility of designing such airships, he concluded
that only metal airships were worth building.
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"Eq. 16 is used to calculate the maximum radius of the ring,
since the ring has one center but two perimeters and two radii. 1In
order to obtain the radius of the inner arc of the ring, the radius
of the outer ring must be subtracted.

"Konst. Ed. Tsiolkovskly, teacher at the Borovsk District
School.

"30 August 1890."
(Last page of the same MS)



But Tsiolkovskiy did not immediately present his conclusions,
the fruit of his basic research, to the scientific institutions or to
the press. ,

He was not worried that someone else might appropriate his
ideas; his concern was rather that flaws in the scientific and tech-
nical presentation of his 1deas might provide his adversaries with
an excuse for casting doubt on them. And so, though not an engineer
and lacking any experience in engineering design, he decided to solve
all his problems by dint of his own research. Thanks to his great
talents and years of obstinate toil, Konstantin Eduardovich did in-
deed attain exceptional results.

Instead of merely designing an airship of no matter what kind,
so long as it would fly, from the very outset K. E. set himself the
most difficult task, that of designing a vehicle that would be ideal
from every point of view: safe, simple, operationally convenient,
and economic.

It was by following this path that he arrived at the conclu-
sion that the vehicle must be made entirely of metal. He reasoned
primarily that this would safeguard his (inflammable hydrogen-
filled) airship against its greatest enemy -= fire. As for fire
itself, K. E. considered it a means of improving the operating}quali—
ties of the dirigible, by heating the gas inside it. It was thus
that the brilliant idea of "uniting fire and metal" was born in the
author's brain.

In 1886 K. E. Tsiolkovskiy haed already completed his first
ma.jor work on the theory and design of the aerostat; it was not pub-
lished at the time, but the MS was entitled "Teoriya aerostata’
(Theory of the Aerostat).¥ Confident in his accomplishments in basic
research, in 1887 Tsiolkovskily presented & report on them in Moscow
at a meeting of the Physics Section of the Society of Amateurs of
Natural Science. The report was received with approval.

A different reaction was provoked by this report when it was
submitted to the Seventh Aeronautics Division of the Russian Technical
Society, which discussed 1t in the author's absence in October 1890.

It turned out that the Aeronautics Division lacked faith in the
future of maneuverable alrships, as reflected in its decision, commu-
nicated to Tsiolkovskiy in Borovsk: "1) It is highly likely that

#The full title of the M5 was: "paoriya 1 opyt aerostata, imeyush-
chego v gorizontal'nom napravlenii udlinennuyu formu" (Theoretical
and Experimental Aspects of an Aerostat Elongated 1in the Horizontal
Direction).



metal aerostats will be built; 2) Tsiolkovskiy may render great ser-
vices to the cause of aeronautics; 3) the construction of metal
acrostats is extremely difficult; 4) the aerostat (in the opinion
of the society) is doomed for ages, by the very nature of things, to
remain a plaything of the wind."#

In 1891 K. E. Tsiolkovskiy turned to the eminent Russian
scientist Professor A. G. Stoletov with a long letter in which he
elaborated his idea of the metal airship.

Subsequently, Tsiolkovskiy began to publish his work in sepa-
rate articles. Since he found it difficult to publish everything at
once (about 300 pages), and thought some polishing up of his manu-
script of the "Theory of the Aerostat" still necessary, he divided it
into individual articles, revised and expanded each article and pub-
lished them consecutively over a period of years (1892-1908).

His inability to gain the material support of the official sci-
entific and technical community forced the author to appeal to a
broader stratum of society; he rewrote his mathematical work in
popular language and asked those in sympathy with him to read his
book, in the belief that this alone would suffice for his irrefutable
conclusions to win recognition.

The publication of Tsiolkovskiy's "Maneuverable Metal Aero-
stat" in 1892 was followed by a second edition of the same book in
1893 and, in the same year, by his short article "Is a Metal Aero-
stat Feasible?" and the treatise "A 200-Man Maneuverable Iron Aero-
stat” and, in 1897, by the book "Independent Horizontal Motion of a
Maneuverable Aerostat”; in 1898 there appeared the book "A Simple
Account of the Airship (Popular Exposition)"; in 1905, a short
article "The Metallic Airship," and, lastly, during 1905-1908 K. E.
succeeded in having the greater part of his original work "Theory
of the Aerostat” published in the journal "Vozdukhoplavatel'" (The
Aeronaut) under the title "The Aerostat and the Airplane,” after ex-
tensive revision by the author.

Thus 22 years passed from the time K. E. first drafted his
manuscript of "Theory of the Aerostat" before most of its contents
were finally published.

The publication of Tsiolkovskiy's works met with a varied
response from the Russian and foreign press.

In 1897 "Moskovskiy vestnik" (The Moscow Herald) declared:

*As reported by Tsiolkovskiy on page VII of his book "Prostoye
ucheniye o vozdushnom korable i yego postroyenii" (A Simple Account
of the Airship and Its Comstruction). Kaluga, 190k.



"No one is a prophet in his own country. This concerns a Russian
gcientist from Kaluga, Tsiolkovskiy.... In 1893 this compatriot of
ours, a scientist-theoretician, published a brochure entitled 'The
Maneuverable Metal Aerostat.! Neither the general nor the special-
jzed press of Russia considered 1t neceéssary to make the least men-
tion of this brochure, which in the meantime has been translated
into the French, German and English languages and has given birth to
a stimulating debate abroad. It was sinking into oblivion when it
was rescued by Andrée's flight. A French periodical states that had.
Andrde read this book he would never have undertaken his senseless
flight*.... So far so good, but one question remains: why did
Russian scientists comsider it necessary to snub Tsiolkovskiy?"

Even earlier, the journal "Razvedchik" (Explorer) declared:
"psiolkovskiy is a fanatical scientist obsessed by the idea of the
maneuverable metal aerostatb. It appears that he has been working
on this idea for more than ten years; he has had published an en-
tire book entitled "The Aerostat" and a brochure "The Airplane,” and
he has written many manuscripts. Moreover, he has conducted a whole
series of interesting experiments on the resistance of air to oblong
bodies and has constructed a model of an aerostat to prove that metal
can be used in aerostat construction.... Tsiolkovskiy's work "The
Maneuverasble Iron Aerostat,” clearly the fruit of solid labor, is
couched in very concrete language and deserves following up. "

In 1904 Tsiolkovskiy's proposals were discussed in Kaluga by
a group of engineers. They concluded, among other things, that his
project was definitely feasible, highly important, and indisputably
correct from the theoretical standpoint.

Following is the text of a press report of these conclusions:
"Ihe author of this project, as his numerous published works demon-
strate, has rigorously and comprehensively studied and elaborated
the entire theory of aeronautics, carried out a great deal of mathe-
matical and experimental research in this field, welghed all the
known principles of aeronautics and, in drafting his project,
guided himself only by incontestable principles established on the
basis of the enormous material he has explored and developed. The
airship of K. E. Tsiolkovskiy is the result of persistent toil and
the zealous pursuit of an idea. It is to be hoped that these remarks

#Tn 1897 the Swedish engineer Andrde (born 1854), together with two
companions, Strindberg and Fraenkel, attempted to fly by balloon
from Vigo Island (Spitzbergen) to the North Pole; all three
perished without achieving thelr goal.



will not pass umnoticed and that both the public and the press will
remember the existence of this project of our compatriot Tsiolkovskiy
and support its materialization."* This is followed by the signa-
tures of 14 mechanical engineers, technologists, railroad englineers,
and candidates of mathematical sciences.

In 1908 Tsiolkovskiy completed a manuscript entitled "The Heat-
ing of a Light Gas and the Resulting Change in the Lift of an Aero-
stat,” which represented part of the unpublished manuscript of his
very first theoretical work, "Theory of the Aerostat" (1886). Accora-
ing to the engineer B. N. Vorob'yev, who studied the literary legacy
of K. E. Tsiolkovskiy, the contents of this manuscript represented
Chapter XVI of Part I of "The Aerostat and the Airplane," prepared
for the press and published during 1905-1908 in the journal "The
Aeronaut," in St. Petersburg, but not printed on the scale antici-
pated. This chapter was entitled by K. E. "Thermal Calculations of
the Dirigible.” He wrote of it: "These calculations were made long
ago and were supposed to be published in 'The Aeronaut' as a continu-
ation of my major work 'The Aerostat and the Airplane.' But that
Journal became the official organ of the Aeroclub, and so the pub-
lication of my work was discontinued. "

Devoted to his idea of an all-metal dirigible, Tsiolkovskiy
continued his arduwous work despite lack of active response from the
scientific public.

In 1910 two of his articles appeared in the press: "The Metal
Aerostat, Its Advantages and Conveniences," and "A Metal Bag of Vari-
able Volume and Shape."

Tsiolkovskiy's files were found to contain the manuscript of
his preface to one of these articles, beginning with the epigraph:
"This may be found true when I am no longer here. I shall be gone,
but logic will always remain."

The new works of K. E. aroused further response, but once
again 1t was isolated and ineffective and at best provided the author
with moral support.

In 1912 the journal "Elektrichestvo i zhizn'" (Electricity and

#The conclusions of the group of engineers in Kaluga were published
separately on page 4 (Kaluga, 10 July 190%) and immediately after-
ward reprinted in various Russian newspapers and periodicals.

*¥¥B. N. Vorob'yev. "On K. E. Tsiolkovskiy's 'Heating of a Light Gas.'
Sbornik No. 6 nauchno-tekhnicheskikh rabot po vozdukhoplavaniyu
(Coll. No. 6 of Scientific and Technical Works on Aeronautics),
publ. by Aeroflot, Moscow, 1938, pp. 1-1k.



Life) printed the following: 'Tragic is the fate of this talented
and erudite inventor. His numerous discoveries have remained un-
noticed and, in the course of time gome of them have been ascribed
to other inventors...- The future historian of physics will doubt-
1ess note the amazing persistence of our compatriot whom we, his con-
temporaries, did not appreciate.... Apparently he is too far ahead
of his time and his country."

Tn 1914 "Golos Moskvy" (The Voice of Moscow) declared: "An
evil fate plagues Russian inventors....Fevw have heard of K. E. Tsiol-
xovekiy...whereas the names of Wright, Zeppelin, and the like, are
on everybody's 1ips....Tsiolkovskiy's 1ot is truly to be deplored...-
Many of his theoretical conclusions'ééémed at ope time to be sO
strange as to perplex even specialists. And yet, pearly all of them
have since been proved in practice -~ vut alas not in Russia. Here
are a few typical examples: 1n 1895 Tsiolkovskly was the first to
describe the airplane® and provide & correct mathematical descrip-
tion of all its parts. More than ten years later the airplane was
built; in the *nineties he proved the feasibility of maneuverable
serostats, and now dirigibles have become an accepted fact; in 1903
he published & study of the theory of motion of projectiles based
on the rocket principle. Three years later this principle was put
to military use in America and Sweden; in hig studies of the resis-
tance of air Tsiolkovskiy proved a theorem that at first glance
seemed paradoxical: that the pressure of a flow normal to a plate
depends on the elongation of the plate.** This conclusion won
recognition only after Eiffel's experiments. In 1897 Tsiolkovskiy
expressed new ideas on the emissive life of stars; two years later
these ideas were published by an American scientist, who retained
the honor of being the discoverer. And now, Tinally, Tsiolkovskiy
4s working on & grandiose task -- metal aerostats....In the brochure
which he has sent me [i.e., the author of the notice in "Golos
Moskvy" -- V. S.] he fouchingly appeals for the confidence of the
public: "The leitmotif of my life has been to acco plish something
of benefit to menkind, to live & useful life. That is why I was
interested in doing something that brought me no personal gain; but
I hope that my work will provide society with abundant material

e e

#The author of this newspaper report apparently was unaware of the
research done by A. F. Mozhayskiy during 1880-1885 -- V. 5.

#¥Tnis discovery by K. E. is described in Volume 1 of his Collected
Works, Academy of Sciences USSR Press, 1951, PP 6 and T [V- s.]



10

wealth and magnifieg powers. "#

The above quotations demonstrate that many had recognized the
scientific validity of Tsiolkovskiy's conclusions and the indisputable
advantages of his airships to the national economy, should they be
built. Byt dozens of years passed without any one in Russia or abroad
undertaking to realize Tsiolkovskiy's Proposals.,

II. The Originality of Tsiolkovskiy's Scientific and
Technical Tdeas. 4 Glimpse Tnto the Future.

With his broject for an all-metal dirigible K. E. Tsiolkovskiy
proved to be ahead not only of all his fellow inventors but also of

ly only diffident attempts had been made at constructing tiny dirigi-

In his view, the wing Problem could be solved by following an
easier, though longer, route; moreover, K. E. was confident in the
inevitability of an increase in engine power, in technical progress.
The most fundamental problem'awaiting solution at the time was, in
his opinion, that of insuring a longer flight time, but this could
not be accomplished with dirigibles with fabric envelopes, which

——————

*¥All the €xcerpts cited here are from notices published in the preface
to K. E. Tsiolkovskiy's brochure "A Table of Corrugated-Metal
Dirigibles," Kaluga, 1915 -- v. 3.
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leaked gas and 1lost 1ift and therefore could not remain aloft long.
Moreover, Tsiolkovskiy regarded the fabric envelope as insufficiently
strong and a fire hazard; since it was not airtight, air could pene-
trate and, once inside, mix with the hydrogen, i.€., form an in-
flammable mixture which a random spark could transform into fiery
death for the ship and its passengers. '

Among the other disadvantages of fabric envelopes Tsiolkovskily
mentioned the piloting problems due to the variability of the diri-
gible's 1lift and the inability of the pilot to control the static
equilibrium of the vehicle by suitably altering the gas teuperature
in the balloon: heating the gas inside a fabric envelope struck
Tsiolkovskiy as a serious fire hazard to the entire dirigible.
Lastly, the fabric envelope 1imited the size of the dirigible and
hence the possibilities of a marked increase in its load capacity.

In view of these considerations, Tsiolkovskiy began to advo-
cate the idea of huge dirigibles with an 51l-metal envelope.

gince a metal envelope is not inflammable and the gas inside
1% cannot escape, K. E. thought it possible to heat the hydrogen
artificially in flight without incurring any fire risk; by this
means he hoped to provide the dirigible with constant and perfect
vertical maneuverability.

In order to enable the gas to expand freely during the ascent
of the vehicle or in the event of excessive heating, and in order to
prevent a fall in pressure (as compared with the pressure of the
outside air) during the descent of the vehicle or on cooling of the
gas inside the envelope, the dirigible envelope should, in Tsiol-
kovskiy's opinion, be capable of changing volume, i.e., shrinking
and expanding.

From the standpoint of design, Tsiolkovskiy's proposal reduces
to concentrating all the weight of the vehicle in the envelope, which
would thus serve as both gas contalner and structural skeleton.

This consideration convinced Tsiolkovskiy that the larger the
volume of such & dirigible the greater its advantages.

Despite all the persuasiveness of his arguments, however, they
were not utilized in actual dirigible construction.

The low level of technology at the time, the difficulty of
making gastight seams in balloon envelopes, and the complexity of
the actual construction of a metal envelope of variable volume --
all this forced the builders of small dirigibles to employ soft
fgbric balloons and a rigid framing system in building large ones.

Thus , Tsiolkovskiy's ideas found no immediate support either
in Russia or abroad.

His ideas were dozens of years ahead of the science and tech-
nology of his time.

The subsequent development of the technology of dirigible
construction shows that Tsiolkovskiy's ideas were adopted by other



authors who, however, treated them as recent discoveries, without
mentioning the name of Konstantin Eduvardovich.

Thus, while the end of the nineteenth century was mainly
characterized by the development of ideas and designs for different
dirigible systems and little actual construction, the beginning of
the twentieth century was marked by the successive development of
several types of dirigible.

Regarding the dirigible as a means of transport, during 1886-
1892 Tsiolkovskiy showed why small dirigibles are unsuitable for
this purpose and proposed a design for a giant dirigible. The bold-
ness of his concept frightened his contemporaries.

In practice, during the period from 1890 to 1910 emphasis was -
placed on the development of small dirigibles mainly -- with the ex-
ception of the German zeppelins -- of the nonrigid type. Experience
has shown that these dirigibles are unsuitable for transport purposes.

As Tsiolkovskiy had foreseen, fabric dirigibles of the non-
rigid type proved to have a low load-~carrying capacity and a high
dead load factor, as well as an extremely limited provision for
fuel supplies, a short radius of action, and a very low ceiling.

All this restricted their usefulness to the performance of
special services only. As a rule, their volume did not exceed 5000

to 8000 m:, whereas for transport purposes large-volume dirigibles
were needed.

The dirigibles most Popular around 1925 were of the so-called
semirigid type (with a fabric envelope combined with a rigid metal
keel extending longitudinally along the bottom of the ship from nose
to stern) with flying and steering qualities greatly superior to those
of the nonrigid ships; the volume of the semirigid ships reached as

much as 10,000 to 20,000 m: but even they were still unsuitable for
organized passenger service. The problem of the safety of long-
range flights in these dirigibles could not be satisfactorily solved.
As Tsiolkovskiy had foreseen, the needs of an aerial transport fleet
could only be satisfied with much larger ships.

As far back as 1892 K. E. had pointed out the need to design
a 200-man transport dirigible, i.e., a giant alrship, and he commenced
his investigations with the problem of insuring its operational
safety. Tsiolkovskiy's idea that a true transport dirigible is
possible only if its volume is enormous (hundreds of thousands of
cubic meters) found its embodiment abroad where about 1930 gigantic
dirigibles with a volume of 100,000 to 2,000,000 m3 began to be built.
But the foreign designers followed a reasoning different from that
of Tsiolkovskiy. The glant ships R-101 in Great Britain, Akron and
Macon in the United States, and Hindenburg in Germany, the design of
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which was based on the German dirigibles (zeppelins), did not meet
Tsiolkovskiy's principal safety requirements. Life itself cruelly
showed how right Tsiolkovskly was: all four crashed and many lives
were lost. - ' .

For forty years (1895-1935) the foreign proponents of trans-
port dirigibles argued in favor of the guperiority of the zeppelin
system. It is characteristic of the prickly and costly path of de-
velopment of dirigible construction that firms were commissioned
merely to improve on a predetermined design; the blind reluctance,
or rather failure to apprehend the advantages of investing capital
in other, more progressive ideas of dirigible construction, ultimately
led to the bankruptcy of the entire idea of transport dirigibles, in
Germany, in the United States and in Great Britain.

The colossal expenditure of effort and resources Ol dirigible
construction during these forty years is eloquent proof of the
enormousness of the aerial transport needs of the countries naned.
The disasters encountered by the giant dirigibles owing to design de-
fects and errors in operation 1ed to the halting of the construction
of further airships.

It is significant to note that the abandonment of airships in
the United States, Great Britain and elsewhere was motivated by the
failure to solve the problems of the construction of transport
dirigibles rather than by any sudden disappearance of the need for
this means of transport. : - )

The colossal capital investments in dirigible construction in
the United States, great Britain, and Germany, which continued until
the final aerial catastrophes (until 1937), indicate that though the
need for transport dirigibles was enormous & reliable, safe and
operationally simple dirigible just could not be developed. The
foreign designers paid a cruel price for their errors, which con-
firmed the validity of Tsiolkovskiy's scientific and technical ideas,
based on the unconditional requirement of operational safety.

Of course, nhow, in the mid-twentieth century, when we consider
Tsiolkovskiy's work on all-metal dirigibles, we should examine it not
in the light of the technology of 1886-1892, when K. E. formulated
his first technical concepts, but in the light of our present possi-
pilities as defined by the latest achievements of science and en-
gineering.

Although the basic idea remained the same, the 1ast zeppelins
to be built (1950—1935) differed from the original zeppelins (1900)
in method of design and in certain structural details.

. K. E. always tested his theoretical concepts with the aid of
mathematical analysis and experiments on models. As part of his
metal envelope project, K. E. made a mathematical analysis of the
stress distribution in the envelope a8 the shape of its cross sectlon
changed. In checking his design of a metal envelope of variable
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volume, K. E. verified his computations on models. By means of exact
geometrical calculation he Succeeded in making the models vary in
volume smoothly and flexibly, from a flat box to a solid of revolution
and back again.

In the last years of K. E.'s life_york on models of envelopes
Tor his airship was carried on by a special design office and reflected
the technological level of the thirties.

K. E.'s death led to a cessation of work on his dirigible at g
stage at which not only was the craft still incomplete but not even a
working design of the ship as a whole had been prepared.

In our day science and technology are developing at a head-
long pace, and an interval of 20 to 30 years may thus represent a
major period in history. Therefore, the future builders of trans-
port dirigibles will Probably examine largely from the historical
standpoint the individual design solutions once Proposed by K. E.
Tsiolkovskiy, while focusing their search for valuable hints and

and, as indicated by experience in the development of the zeppelins,
in its bresent-day form, had it existed, it would not only have borne
‘very little resemblance to the 1890 version but would have greatly

Thus, while a designer may pass lightly over those of Tsiol~-
kovskiy's technical solutions that by now are mainly of historical
interest, he will find the substance of K. E.'s work to contain much
that is of value and proof positive of the supremacy of the author's
sclentific and technical ideas, where our present accomplishments in
dirigible construction are concerned.

III. The Triumph of Tsiolkovskiy's Ideas

The potential of glant dirigibles as high-capacity freight
carriers capable of nonstop trips lasting several days over any
route on earth and across any ocean has impelled nearly every major
nation to attempt to develop such airships.
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This has not proved to be an easy matter. The countries which
guffered resounding failures in the use of dirigibles -- failures
that involved disasters with, as a rule, great loss of human life --
appear to have lost nearly all hope of surmounting the design, Pro-
duction and, particularly, operational difficulties that came to
light. ,

Among these unsuccessful countries are France, Great Britain,
Italy, and the United States; they all (except the United States)
abandoned further development of dirigibles, especially glant diri-
gibles. Germany, which also suffered tremendous losses (in 1937 the
crash of the world's biggest airship, the Hindenburg), instead of
drawing pessimistic conclusions announced an expansion of its program
of dirigible construction.

The foreign press has more than once asserted that airships,
capable of floating in the air for days on end, are greatly needed
in peacetime as well as in war, but first there is a need for in-
novations in the technology of dirigible construction with the aim
of improving the airworthiness of these ships and eliminating the
chances of fatal accidents.

The authors of these comments maintained +that the dirigible
cannot compete with the airplane: its role begins where that of the
airplane ends.

Everyone remembers the measures taken by the Germans during
1930-1935 to use giant zeppelins to establish major air links be-
tween Europe and South and North America. At that time, Germany
succeeded in building a global network of dirigible bases with hangars
and mooring masts. In South America these bases used the facilities
of the extensive local Cerman-organized airline network, while in
the Atlantic floating bases on board specially equipped sea-going
ships were introduced.

Dirigibles could also perform another and no less important
civilizing function. The solution of the principal problems of the
design, production and operation of huge transport dirigibles, and
the development of a dirigible design of maximum operational simpli-
city and reliability, assuring maximum flight safety, would provide
a basis for organizing a complex dirigible service to all the road-
less and remote regilons of the world. Under certain conditions this
could considerably speed up the rate of cultural and economic de-
velopment of these reglilons.

All these problems of the broad employment of dirigibles would
have been generally recognized, and airships would have won public
acceptance, if instances of breakdowns and disasters could have been
reduced to a minimum.

This is confirmed by the fact that until 1935 the United States,
Great Britain and other countries pursued extensive programs of
dirigible construction, involving millions in investments. A major
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reason for dropping these programs was doubt in the possibilities
of successful operation of airships of the conventional rigid type,
which do not always insure sufficient 1ift and constitute a fire
hazard, especially when the gas employed 1s hydrogen. But this, of
course, did not in itself reduce the demand for transportation of
this kind.

World public opinion began to propose as the major requirements
for dirigibles the conditions that had been formulated 4o years earli-
er by Tsiolkovskiy in nearly the same words (except that he did not
mention helium), namely:¥

a) eliminate fire hazards by replacing inflammable hydrogen
by a completely incombustible gas -- helium;

b) improve the quality of the materials used in dirigible con-
struction, use 1ightweightryetbstrong materials;

_ c) improve the design so as to make it less vulnerable to ex-
treme operating conditions;

d) increase the load capacity while at the same time insuring
freedom to select a route depending on the weather conditions;

e) prolong the safe operating period of the dirigible;

) simplify operation and make dirigibles capable of parking
aloft, tethered to mooring masts; N

g) reduce to a minimum the operating expenses, mainly gas
leakages, which is particularly important on conversion from hydrogen
to helium;

- h) investigate the operating conditions in all their aspects,
so as to assure the complete safety of regular flights.

These severe requirements caused the leading designers to
adopt a critical attitude toward the seemingly inviolable principles
of designing giant airships based on the Zeppelin system. The de-~

*See, e.g., Carl B. Fritchie, "The All-Metal Airship" in The Journal
of the Royal Aeronautical Society, 1931. Russian translation pub -
lished by ONTI in 193L.
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signers began to realize that material was not being efficiently
utilized: the frame of the airship was the only structural element;
the remaining material (for example, £as ballonets and outer covering,
which account for a large part of the dirigible's dead weight) did not
add to the structural strength, the frame being left to carry the
burden alone.

In endeavoring to eliminate this shortcoming and have all the
elements of the airship participate ip insuring its structural
strength, the designers began to consider the advantages of building
glant dirigibles with an all-metal hull.

The metal envelope fulfills the dual purpose of lending struc-
tural gtrength of the dirigible and serving as 2 gas container. This
solution of the problem eliminates accessories such as the outer
covering and +the lifting gas ballonets, and it causes the entire en-
velope of the dirigible to react to the influence of gravity forces
and aerodynamic loads.

On the whole, for & Jarge dirigible this solution reduces the
dead weight of the ship.

The successful design solution of this compleX technical
problen opened the way for the eventual construction of large-volume
dirigibles with a much greater 1oad capacity than the zeppelins and a
longer range, higher operating ceiling, and & greater capability for
nonstop flights.

The same problem could not be golved with small dirigibles and
became Very real once the advantages of using giant airships were
recognized and airships with a volume of hundreds of ‘thousands of
cubic meters were built.

Thus, the advances in scientific understanding 1led back to
the theories offered as early as the end of the last century by
Tsiolkovskiy: it was recognized that only large airships could be
advantageously used for transport purposes and that these airships
should be all-metal (cf. Tsiolkovskiy's "200 -Man Maneuverable Iron
perostat™).

Forty years of experimenting were needed to produce concepts
that had already been expressed by K. E. Tsiolkovskly, while aero-
nautics was still in the cradle.

As American designers have admitted, the advantages of dirigi-
bles with a metal envelope consist in the following, as previously
stated by Tsiolkovskiy: T :

U e

*See, €.8-, articles by the various engineers who participated in

building the MC-2 dirigible, a8 edited by C- Fritchie in the journal

"peronautical Engineering," 1931. A Russian translation by 7.akharov
was published under the title "Wozdushnoye sudno S metallicheskoy
obolochkoy" (An Airship With a Metal Envelope), ONTT, Cosmashmetizdat,

1954,
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L. A metal envelope can be made absolutely gastight; ir filled
with hydrogen, it will be free of the diffusion (usually observed in
dirigibles with a fabric envelope) which may lead to the Tormation of
a detonating mixture near the envelope; if', on the other hand, the
ship is filled with & nonflammable gas 1ike helium, the meta] en-
velope will protect the gas against contamination angd leakage, which
is extremely Important considering the high cost of helium,

2. The metal envelope of the dirigible makesg it less suscep-
tible +o accidental damage and therefore more operational.

5. Such a dirigible will perform much better (compared with
conventional dirigibles) when tethered to masts; moreover, it is not
vulnerable to the weather and does not require servicing in hangars
and shops during stop~overs en route.

L. Such a dirigible should be extremely economical gnd have
a long life.

5. Such g dirigible should be safe for bPassengers, since
weather conditions do not affect it, and it should be safer for over-
seas I'lights than existing models.

Work on metal-envelope dirigibles was begun in the USSR angd
United States, but for various reasons it hag to be abandoneqd before
the construction of the first models of large metal dirigibles could
be completed.

As noted previously, K, E. Tsiolkovskiy claimed that the
future belonged to ships that were both hugé and made entirely of

TSiOlkOVSkiy wrote that fabric alrships could also be made
completely.maneuverable, but only metgl airships could be safe.
Considering the complete impermeability of the metal envelope,

Tsiolkovskiy, as we know, did not confine himgelf merely to
broposing a metal envelope. He worked out a theory of a "breathing"
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veloped the theory of this problem.

Tsiolkovskiy's dirigible, if successfully tested, would have
meant low-cost and simple dirigible production.

Despite all the attractiveness of the design and its indispu-
table operational advantages, the actual construction of a ship with
a variable-volume envelope proved to be extremely difficult, even for
the most advanced technology of the late twenties and early thirties.

The designers of metal dirigibles, both in the USSR and United
States, started with a minimal program of improvements in dirigible
building, this being simpler for the designers; thus, a variable-
envelope dirigible was not contemplated.

Eventually, a metal-envelope dirigible, the MC-2, with a
volume of 5600 m;, was built in the United States.

Sinee the dead weight of this small ship was so great (4150
kg) as to reduce its load capacity to almost zero, it must be re-
garded merely as a flying model of the future huge all-metal dirigible.

American designers did not attempt to apply the principle of
Tsiolkovskiy's "breathing” envelope, but confined themselves to the
scheme of a thin metal envelope reinforced by a lightweight metal
framevork of stringers and ribs. The envelope together with the
framework represented a single structural unit, as in Tsiolkovskiy's
dirigible.

The fixed shape of the American dirigibles and the mainten-
ance of the required excess gas Pressure inside the envelope were ac-
complished with the aid of ballonets in the form of fabric bags placed
inside the metal envelope. In this case, the danger of an accidental
mixing of the lifting gas with air inside the ship 1s eliminated by
using the inert gas helium instead of the inflammable hydrogen.

Trials with this dirigible confirmed the assumption that
metal-envelope dirigibles have considerable advantages.

The data on the operation of this dirigible were used as the
basis for calculating the design of another, enlarged model (200,000 m?
volume).

The calculations confirmed both a saving in weight as compared
with a zeppelin of the same volume, and a gain in speed. A decisive
advantage of the metal-envelope dirigible, according to these calcula-
tions, was that the metal envelope can withstand a sharp rise in ex-
cess gas pressure; in fact, within certain limits, the overall
structural strength of the ship even increases somewhat instead of
decreasing. Therefore, the ship's captain can always increase the
overaly]l safety factor during forced and hazardous maneuvers by raising
the excess gas pressure.

The design principle of this envelope makes full allowance for
aerodynamic requirements and reduces drag to a minimum. Calculations



20

of large-volume dirigibles have shown that K. E.'s theories on the
possibility of constructing a gastight metal envelope are definitely
feasible, and that the maximum advantages of such an envelope can be

obtained only for ships with a volume of 100,000 m; and upward; in
fact, the larger the volume the greater the advantages. ¥

This last conclusion merely echoes what Tsiclkovskiy had as~-
severated in the nineties and laid down in a number of his works.

A group of Soviet dirigible builders, engineers who ascertained
through their own calculations that technical progress in dirigible
building would depend on the development of a new type of metal-en-
velope dirigible, produced a complete design for a ship of this kind,

with a volume of 8000 m;, and carried out a number of related experi-
ments.

This dirigible was also intended to be a large alrworthy model
of the future all-metal flying giants. But in this case, too, the
only ideas of Tsiolkovskiy's to be utilized were his scientifically
based concepts of the metal envelope as a load-bearing structure. As
for the overall structural design of the new dirigible, it remained
quite simple.

The envelope of this dirigible consisted of sheets of stain-
less steel 0.1 mm thick. The principal technological process used in
constructing it and making the joints was electric welding, as recom-
mended by Tsiolkovskiy. Compared with the riveting employed by the
Americans, electric welding is more reliable, since the seams are
stronger and more gastight, and the work goes considerably faster.

The problem of constructing the world's first stainless-steel
dirigible was solved by the young and talented Soviet engineers ‘com-
pletely on their own, using new materials and a new technological
process. The ship's hull consisted of a lightweight frame to which
the envelope was welded. Thus the entire hull was a load-bearing
structure. The envelope, which lacked interior ballonets, served
also as the gas container. No attempt was made to construct a vari-
able-volume envelope and so, in order to insure a constant internal
excess pressure in the envelope, two fabric air-ballonets were intro-
duced; the air in them was delivered by a propeller. The successful
progress of the work to develop this first Soviet metal-envelope

®
*This refers to the calculations of the designers of the dirigible
ZMC-2, given in their articles in the journal "Aeronautical Engineer-
ing," 1931 (see footnote on p. /19).
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dirigible confirmed all the original concepts and calculations of its

designers.

A1l that had been done thus far in the USSR and United States
was to solve @ mere fraction of the complex of rechnical problews
proached in Tsiolkovskiy's works. Not even a rudimentary attempt was
made to translate intoireality Tsiolkovskiy‘s calculations of the
mpreathing” envelope; rhat was still peyond the grasp of the dirigible
engineers. '

The pallonetless dirigible was Joubtless & major gtride for-
ward in dirigible construction. K. B. Tsiolkovskiy, thanks to his
rigorous calculations, provided a solution of this problem. As
science and technology develoP; other solutions may also arise.

Once the construction of transport dirigibles is resumed on &
large scale, the final design of the all-metal ships will, of course,
pe adapted to ‘the latest achievements of engineering gcience and
pased on analyses of the worldwide experience gained in the building
and operation of dirigibles. By now, however, it may be confidently
stated that as for the feasibility and economic expediency of build-
ing metal-envelope dirigivles, the principles first rormulated by
Tsiolkovskiy have completely passed the test.

It is gbsolutely certain that the fFubure belongs to the
dirigible that has & completely gastight envelope, i8 the least sus~
ceptible to weather conditions, the simplest to repair, €asy to
operate, optimal in design with respect to weight and, therefore,
with a maximum load capacity and optimal flying and operating quali-
ties. This jdeal airship of the near future is a pallonetless
dirigible with an all-metal hull and 2 variable-volume gas container,
exactly a8 maintained by Tsiolkovskiy in all his works on dirigivle
construction. -

Following their work with metal dirigibles in 1929—1930 the
American dirigivle builders advanced the concept that the pest solution
was a large dirigible with a metal envelope.

As far back as 1890 Tsiolkovskily had foreseen this trend and,
in his calculations for & variable-VOlume metal envelope, he had al-
ready expressed'this idea of the American designers. He had whole-
heartedly striven to ensure the primacy of his compatriots in airigivle
development.

The fundamental premises for judging the further prospects of

dirigivle building nust bes

e

#por SOUrXCES see footnotes oB PP [l[z 1Q,v21.
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1) a conviction that 8 given country must have dirigibles;

The first bPremise existg. This was broved by the tremendoug
capital investmentg in dirigible construction made for many yearsg in
the Uniteq States, Great Britain, ang Germany, by the efforts to
refine dirigible design in building the R-100 and R-101 in Great
Britain, the Akron and Macon in the Uniteg States, and the LZ-127 ang
LZ-129 in Germ » by the huge amount of relateq sclentific research,
and, lastly, by the construction of dirigible bases aroung the worlq.

For it cannot be doubted that, had not the last four giant
dirigibleg met with disaster,* had they accomplished the tasks for

lines linking the 0ld Worlg with the New and the capitals of many
Countries with theip former Colonies; then, of course, the constryc-

invalidate the first of these Premises. Tp reality, the Principal
Cause of thig Ceéssation wag doubt in the structural reliability of
large dirigibles, inability to find g workable technical Solution that
would protect the bPassengers ggainst 80-callegd flight accidents, and
a lack of confidence in the interesteq countries inp their own ability
to cope with the rising difficulties of operating large-volume air-
ships,

It is unquestionable that the problem of the further censtruc-
tion of transport dirigibles hinges on the Solution of the technical
Problem of their safety.

Now the safety of dirigibles, in its turn, hinges on the need
to improve the design of large dirigibles and the techniques of
operating dirigibles, and also on the need to replace the inflammabie

—_—
*Here we refer to: the British dirigible R-101, volume lh8,000 .m3

(crashed in 1930}; the American Akron and Macon, volume 184 000 m:

€ach (crasheqd in 1933 ang 1935) ; ang the German Hindenburg, volume

20,000 m5 (crashed in 1937).
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gas hydrogen by the inert gas helium as the lifting gas of the diri-
gible.

Scientific and technical concepts have advanced to a stage at
which the obsolete large zeppelin-type dirigibles have been abandoned
and the solution of the problem of the all-metal hull has begun to be
explored along the path pointed out by Tsiolkovskiy. Here it is
pertinent to quote K. E. Tsiolkovskiy concerning the way out of the
impasse reached by dirigible construction: "Complete maneuverability
can also be obtained with organic aerostats, but only metal airships
assure safety and broad practical applications."#

IV. Recognition of the Works of K. E. Tsiolkovskiy.
Their Historical, Scientific and Practical Value.

By the time of the Great October Socialist Revolution Tsiol-
kovskiy had reached the age of 60.

After the Revolution a tremendous change took place in K. E.'s
1ife. Under Soviet rule he became surrounded with esteem and unflag-
ging attention. His works received complete recognition.

The entire history of dirigible construction and a penetrating
analysis of every improvement made in the dirigibles actually built
1led K. E. to conclude that there was no need to modify any of his con-
cepts of the all-metal dirigible, and further convinced him of the
validity of the conclusions and suggestions that he had offered
since 1890.

The works of Tsiolkovskiy that date from the Soviet period
repeat the principal assumption of his theory of the metal aerostat,
provide counsel on the practical organization of experimental work,
survey critically the existing types of dirigibles, and point out the
errors in the research into metal-envelope dirigibles in the USSR and
abroad. '

In the final years of Tsiolkovskiy's life an engineering group
was set up at the "Dirizhablestroy” Trust with the object of design-
ing a ship along the lines he proposed. In 1933 this group was renamed

¥K. . Tsiolkovskiy. "Prostoye ucheniye o vozdushnom korable," Kaluga,
190k, p. 103.
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the Bureau for Building the Tsiolkovskiy Dirigible, and provided with
an experimental shop.
The first two steel models of the envelope, with volumes of 1

and 13 mj, yielded a great deal of information for elaborating the
technological process and continuing the project,
In 19335 the Bureau designed an experimental flying model with

a8 volume of 3000 m?, based on an outline sketched by Tsiolkovskly a
year previously. The research program provided for experimental in-
vestigations of different methods of Joining steel sheets, the me-
chanical properties of corrugations, the strength of the Jjoints be-
tween individual components, the behavior of complete envelope under
variable loads, etc.

In addition, K. E. drafted a program that envisaged the con-
struction of a number of models of progressively increasing size,
with gradual refinement of the individual structural components.

Taking into account the desiderata stated by K. E. (see above),
the Bureau designed in l95h, and built in 1935, a model with a
volume of 1000 m5 that was the prototype of the envelope of the
future Tsiolkovskiy all-metal dirigible.

During the construction and testing of this model the Soviet
englineers verified the justice of K. E.'s principal postulates on
such advantages of the all-metal ship as total gastightness, simpli-
city of design and construction, which reduced the entire process of
envelope production and assembly to work with plane surfaces, the
possibility of utilizing the engine exhaust gases to heat the lifting
gas with the object of adjusting the lifting force of the dirigible
in flight, etc.

The successes in working with this large model enabled the
Bureau to develop broad research to the deeper aspects of the Tsiol-
kovskiy theory of dirigibles, to elaborate the design of individual
elements and components of the dirigible, to master the technological
process of production and assembly, to reorganize the production base,
and to improve the training program.

The first period of Tsiolkovskiy's creativity (1886-1892),
though characterized by an abundance of ideas and theories of funda-
mental value, which have not lost their relevance up to the present
day, and some of which have even become most topical, could not, of
course, be commensurate with the level of technical progress then
prevailing, which was much lower than it is now.

Readers of Tsiolkovskiy's original works who are already
familiar with the theory of the problem from the specialized litera-
ture of today and the writings of K. E, in the final period of his
life will be interested to trace the progress in the ideas of this
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self-educated scientist from elementary information aboutb gerodynamics
and certain other disciplines to problems of the theory of elasticity
that still present considerable difficulty to the sciencé of our own
day-

A bold combination of advanced ideas in the field of physics
and thermodynamics with strict requirements for the engineering in-
dustry enabled the author, as early a8 1892, to propose an airship
design that would be vest and safest.

As raised by Tsiolkovskiy, such problems as heating the gas
in the airship, utilization of the elastic properties of metal, and
the like, are problems the complete golution of which still requires
a great deal of work on the part of the scientists and englineers of

. the present and perhaps future generations.

Tsiolkovskiy‘s creativity in the field of the all-metal
dirigible is of special value precisely now ‘that the advocates of
the old method of dirigible construction can see no way out of the
aifficulties they have encountered.

For sO 1ong as comparatively gmall dgirigibles satisfied prac-
tical needs, Tsiolkovskiy‘s ideas were regarde& as unnecessary- But
now that previously adopted dirigible designs no longer satisfy the
increased demands and high operating requirements, the only solution
is to undertake gtudies of large dirigivles of the type that has not
yet been realized.

guccessful technical mastery of the principles of the Tsiol-
kovskiy dirigivle would pasically resolve all the aifficulties that
have recently been hampering the construction of transport dirigibles:

1) the all-metal envelope provides s container of maximum
strength;

2) the variable volume of the envelope, which depends ou the
pehavior of the gas inside the ship, dispenses with the complicating
feature of air pallonets and assures the purity of the gas;

3) the heating of gas in the ship facilitates changes in
altitude;

L) the optimal weight ratio of such a shiP could raise€ the
dirigible ceiling 1o 10,000 m.

The actual designing and subsequent construction of dirigivbles

require an extensive study of @& geries of nevw scientific and tech-

nical problems in the 1ight of present-day science and engineering.
The problem of the 1ifting gas must be radically resolved;

1pflammable hydrogen must be replaced by helium.
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T, THEORY OF THE AEROSTAT*

1. CONDITIONS FOR THE EQUILIBRIUM, ASCENT,

AND DESCENT OF THE AEROSTAT

Basic formulas

1. The forces acting on an aerostat can be divided under two
principal headings. The first group of forces are those acting in
the direction opposed to gravity, and accordingly lifting or striv-
ing to lift the aerostat. The magnitude of this lifting force 1is
determined, on the basis of Archimedes' law, by the formula

where the letters denote respectively: the Archimedean buoyant force,
the density of the air, and the volume of the aerostat.

*¥Writings of 1886; 1905 to 1908.

The asterisk (*) will be used to indicate editor's remarks found
at the back of the book, or footnoted in the text,
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2. The action of the other forces is aligned with the
direction of gravity, and consists of the weight Q of the aero-
st,
stat structure and the weight Q@ of the light gas carried in the
g
aerostat balloon. The weight of the passengers, fuel, and any other
cargo will be designated simply as @ . The sinking force Q will
L Bi,
thus be expressed by the equation

3. The relationship between the sinking force and the
buoyant force on the aerostat determines the ascent, descent, and
equilibrium of the aerostat. The equilibrium condition is ex-
pressed by the formula

Q =@ =9 U=4@ +7y U+ Q

or by

4. If this equation is not satisfied, the aerostat will
neither rise nor descend. In that case the resultant R will be
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equal to the following

and will comprise the difference petween the forces acting to buoy
up Or pull down the aerostab. When the resultant is positive, the
aerostat will rise, apd when it is negative the aerostal will de-
gcend, while, when the result is 2z€ro, the aerostat will be in
equilibrium.

Effect of Temgerature and Pressure
on Terms in the Above Formulas

5. The quantities appearing in our above equations are
generally variables. Thus, the density of the air, the density of
the gas, and the volume of the aerostat will depend on the temperar-
ture inside and outside the aerostat envelope, a8 well as o1 the
pressure inside and outside the envelope, and these variables de-
pend 1D turn on the climatic, meteorological, and other influences
(for example, on the sltitude of the gerostat above sea level).

6. We know from physics that the yariations in the terms

U, 7 > and y 8are expressed by the following functions of the ab-
a

golute temperature T and the pressure P
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hs) T

9. U=U'~O'—§,
T
0 pg o

Since the density or any gas y ig broportional to the pressure ho)
g

g

exerted on it and is inversely Proportional to the absolute tempers-

ture T of the gas, while the dependence of the volume U of the gas
g

on thege Variables ig reciprocal,

10. In these formulas, P denotes the DPressure of the gas
0

where t 4is the centigrade temperature,
However, in these 1ast formulas, We may infer any Pressures,
temperatures, Volumes, ang densities whatever, brovided thege quan-
tities, €.8., T, U, 70, and po are properly interrelated, i.e.,
O o0
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the volume U must refer to the temperature T , density y , and
0 0 0

pressure p .
O .
12, Now, from equation (4), on excluding the variables with
the aid of equatioms (7), (8), and (9), we find

nen [ GG 1o,

13, Clearly, from this equation, the resultant R will not
change in magnitude when the temperatures remain the same but the
pressures vary while remaining mutually equal, as will occur when
there is no obstacle to a change in the volume of the aerostat or
when its envelope is free to change in volume. The resultant will
not change either when the ratio Pa/pg remains constant, i.e.,

when the external pressure is a certain number of times greater or
smaller than the internal pressure, even though one or the other
may vary without limit. This will be the case whenever the volume
of the aerostat or of the gas filling it is artificially varied and
the pressure of the internal gas is thereby altered as well. Such
a case is seemingly of no practical importance.

14, The resultant will likewise suffer no change in response
to a change in the temperature, provided the temperatures inside and
outside the aerostat are equal; this situation will prevail both
day and night in overcase weather with the aerostat remaining at

a fixed altitude above sea level, The resultant will not change
either when the temperatures inside and O tgide are different, but
the ratio of the absolute temperatures T ‘I‘a remains unchanged, This

g

case mav apply to any aerostat.

15, Finally, the resultant will remain unchanged even when
the pressures and temperatures are different but the ratios
P pg and Tg 'I'a are constant, or when the ratio of the products
a,
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pT/p Ta is constant. Note that, from formulas (7) and (8), we may
a g g

infer

16. oy

a

7%_<paTg> .
Y pT

g gO g a

~

Accordingly, in place of this last condition of constancy of
the resultant we may adopt another: a constant R requires that the
ratio between the air and gas densities vy 7g remain unchanged.

a

The Walls of the Aerostat May Be Freely
Compressed and Expanded

17. In an aerostat such as described, the external pressure
pa of the atmosphere may be assumed equal to the internal pressure

pg of the gas; formula (12) will then take on the form:

R [ (e ] Q Q
= U 7 —_— - - - -
0 ao - 7g st. L



18, Clearly them, the resultant

the ratio of the absolub

e temperatures

T

35

R will retain its value when
Ty, 18 constant, no matter

how the pressure of the air and gas change in the process, the same
therefore applying to the volume of the gas

19, ©Since Tg =1+ Tg - Ta.

mi—

Ta

R

T
a

dictated by & constant ratio T -~ T , i.e.
g

the temperature difference ins

)

PR

Ta

absolute temperatbure of the air.

_ 20, For exaxgpled
be guccessively: 0,

let the gentigrwie
10°, 15, 20 25

gbsolute temperature will be higher bY 273"

of the gas be 10° higher initially or 8t O

difference will rise in

o]

response to an incY

ture, but negligibly, if the resultant is t

namely, it will guccessi

10.6°, 10.T 5 10.9°, 11.

vely increase 88 fo

1°, 1135 11.5 .

o1, When the temperature of the air
ture difference must 1ikewise decrease negligibly.

The temperature of the atmosphere gurrounding the aerostat
may thus fluctuate to greab extremes put the difference in the
temperatures will fluctuate by only & slight amount if the resultant

is to remain constant.

(o]

or of the gerostat.

, 8 constant resultant MY ve

, by & constant ratio of

ide and outside the gerostat to the

tempgratuge ofothe air
, 30, 55 Lo  (the

). et the temperature

C; then this temperature

ease in the air tempera-
o remain the same:

110ws: 10.0°5 10.2°, 0.,

decreases, the tempera-

In view of the foregoing, we find for & constant resultant:
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whence, we may readily calculate the difference T -7 gt various
g & '

given T > 88 we indeed hgve Just done,
a .

2h. A1 thig ig valid, as we say (21), even in the case of
unequal temperatures, brovided the difference T - I; variesg slight -~
g

rises, the difference must rige slightly, and when it drops the
difference ™15t drop likewise, This is €xXpressed more €Xactly in
paragraphs 18 ang 19.
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&

N

T or
= (-0

g a

26. Hence, as the temperature of the gas rises the buoyant
force increases in proportion, while as the temperature of the air
rises the buoyant force slackens. Tt is clear that the pressure of
the atmosphere, when equal to the pressure of the internal gas, will
have no effect whatever on the magnitude of the resultant.

o7. We derive from formulas (1), (7), and (9) the following
equation for the buoyant force Qb

o8. But as a result of the free expansion of the aerostat,
p =71 , 80 that formula (25) may be restated as:

T T
g8 __%&) .
dR:Qb Ta Ta)

29, It is readily seen, then,'what the ratio of the incre-
ment in the buoyant force dR is to its total magnitude Qb. For

example, if the absolute temperature of the gas and the air is the
same initially, say, %00° (or o73° + 27°), and were then to increase

by lo, then the relative increase in buoyant force in the case where
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the temperature of the gas rises would be 1/300. At the same in-
crease in the air temperature, the relative decrease would be l/SOO.

30. The invariability of the buoyant force is dictated by the
equation

or or, , T T

g a g 24
- =" or T =",
T T oT T

g a8 a 8

arrived at by setting the second part of equation (28)-ééﬁal<£o
zero,

31, The temperatures of the air and the gas vary naturally
each second, If this change occurs simultaneously and to the same
extent for the gas and for air, or obeys condition (30), then this
change could not affect the magnitude of the resultant, or thereby
the equilibrium of the aerostat, Equal temperatures inside and
outside the aerostat will usually be found in daytime and at night
in overcast weather,

32. Otherwise, the temperatures will be different and will
not obey the rigorous law (30). The difference between the tempersa-
tures of the gas and of the air will depend on the clearness of the
daytime sky, on the cloudiness, on the height of the sun, on the
position of the aerostat relative to the direction of the sun's
rays, on the state of the surface on the aerostat envelope, on the
extent to which the envelope is covered by snow or moisture, At
daytime in a clear sky, the temperature of the gas will be in
general 20 degrees higher because the sun will be heating up the
envelope, The temperature difference will also be affected by the
speed of the independent horizontal motion of the aerostat, as well
as by its rate of ascent or descent.

353. At night in a clear sky, the gas temperature will be
lower, in general, than the temperature of the surrounding air,
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which will depend on the cooling of the envelope by radiation. This
aifference will also depend On olearness of the sky, on the cloud
cover, On the state of the aerostat envelope, ©On how close the aero-
stat is to the cartn's surface, OO the state of this surface OF its
temperature (a factor which is also jmportant in the daytime), on
the motion of the serostat, ete.

3L, Clearly then, poth at Jaytime and at night, unless €X-
ceptional conditions occur, the buoysnt force on the gerostat, or

the resultant, must changé continuously. Thus the equilibrium of

the airship &5 achieved by the 10ed and pallast on board, is con~”

tinually challenged by meteorological and topographic influences,

go that the height of the aerostat above Se& level mus® pe subject
to constant change.

35. But we can counteract all of these effects narmful to
the equilibrium of the agirship, PY adjusting the gas temperature.
To this end, the temperature T of the gas 18 maintained artifi-

cially far above the temperature of the air gurrounding the aero-
stat. When required, the temperature of the gas cén pe lowered
by reducing the inflow of heat from inside the aerostat, OF can

be increased still further by increasing the inflovw of heat. We
thereby gchieve & constant ratio T T, and accordingly & con-
g &

stant resultant RO If the resultnat R 18 zero, then, the aerostat
will maintein an equilibrium despite meteorological and other
effects.

yvolume Of Gas Or Volunme of Aerostat May Not Change

36. Suppose that the volume Of the gas repository can be
neither increased nor gecreased. The first will be the case when
the aerostat is filled tO capacitys the second will occur at the
same time whenever the walls of the gas repository resist any
force moving them closer together pecause Of the rigidity of the
walls, the thickness of geparating partitions, etc.

This cas€ will be encountered most frequently when the
pressure inside the envelope 18 considerably higher than the pres-
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Sure outside,

Then the internal Pressure of the €88 will hinder any decregse

in the aerostat Volume, up to g point.
From formula (4) ywe find

R=yuUu- U-o - .
ya 7g 8t, QL

37T. In the €quation, only two variables gre Present: R apg
7 « Therefore the inerement A in the resultant will be:

Consequently, the resultant wili increase with any increagge
in the density of the air Surrounding the aerostat,

2) an increase in the density of the 8ir surrounding
the aerostat, so that the aerostat will climb unti] the density
has decreaseqd by the same amount Agé;
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Clearly, any increase in the barometric pressure (with the
temperature remaining the same) means that the air density, and con-
sequently also, the resultant will also increase, sO that the aero-
stat will have to climb if it was in equilibrium before then.

As the air temperature increases, the air density and con-
sequently also the resultant will have to decrease, so that the
serostat will have to lose altitude, if it wes in equilibrium
before then. A decrease in the temperature will bring about the
opposite effect.

40, When the air temperature and air density vary simul-

taneously, the equilibrium will be impaired, provided that con-
dition (39)

%p

b

o)

a7

a a
K

a

a

is satisfied, i.e., the relative temperature and pressure increments
must be the same,

When the pressure increases and the temperature decreases,
it is readily seen that the resultant will undergo a double in-
crement,

41. On the basis of equation (7), formula (39) transforms to:
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0p, T
IRt bl

and, on multiplylng both parts of the equation by the volume T,
we find

8

Wy =U7a<a%:—;—'r9->.
a

On the basis of equation (1), then, we may state: the
relative increment in the buoyant force compared to the total
buoyant force is expressed by the formula

Wy, de apa aT&

Uya Q’b pa Ta

42, We refer to the pressure p of the air surrounding the
a

aerostat; But this pressure is not the same on all parts of the aero-
stat. It is lower on the top of the aerostat than on the bottom.
? may be taken to mean the average pressure on the aerostat., More-

8

over, the pressure of the internal gas also cannot be considered the
same on different parts of the interior of the aerostat, since this
pressure will depend on the extent to which the envelope has been
filled, Therefore, our statements on an aerostat having a freely
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varying volume &are not quite exacl.
The pressure outside (p ) may be only approximately equel to
8

the pressure inside (p ). Even & completely £i11ed and blown-up 8€Tro-
g

stat could not retain its yolume unchanged , sgtrictly speaking, despite
any changes in the pressure difference inside and outside the aero-
stat.

A1l of this discussion makes it clear that our earlier for-
mulas fall ghort of being jdeally exact. They represent no more
than one step toward the recognition of certain gruths. A gecond
step may bring us still closer to those truths, but oW formulas
will then have became much more compleX.

43, To complete the picture, we presented here also for-
mulas referring to an aerostal which undergoes 1O change 1n volunme,
but such an aerostat cannot withstand criticism in actual practice.
In fect, an aerostab fitting that description would have ©O pe in-
flated up in such & manneYr that the gab pressure inside would con-
giderably exceed the external air pressure. This pressure aif-
ference would reaquire an unususlly tough envelope. Moreover, any
increase in that difference because of an jncrease 1n the internal
temperature and beceause of a decreast in the barometric pressure
(or pecause Of the ascent of the aerostat) will contribute to the
rupture of the envelope OT in the best case we can hope for, to &
10s8s of gas from the envelope. R

Constancy of the g8t volume will also deprive the aerostab
of the ability to Vvary its puoyant force or to meintain i1ts equi-
1ibrium bY varying the temperature of this ges without losing bal-
1ast and g88.

I1. VARTATION IN AFROSTAT VQIUME

yk, TIn practice, the aerostat canmot increase its volume
without bound, and we will therefore determine precisely to what
extent this volume must be jncreased as & result of the forces act-
ing on the ground and in flight. This is Vvery important, for
jgnorance of the extent of expansion of the g8s enclosed in the
pelloon mEY entail the rupture of the balloon O g 1oss of g8 -~

when the gafety valve is operating properly.
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ferent temperature the absolute temperatuyre of the same gas is T
and the Pressure ig P, the volume of the gas ig U, we will have, on
the basis of the familiagr Properties of gases

gas temperatyre may vary owing to meteorological
factors ang artificia} causes, and hence glgo during ascent,

Equal Gas and Air Temperatures

4g, Consider the effect of the barometric bressure. Baro-
metrie fluctuationsoincrease poleward from the Earth's €quator; but
eéven at latitude 65 they will not attain 75 mp, Hence,

Py 720
— > — _ 0.9057,
p 795
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Accordingly, for that reason we can fill up only 9/10 of the
volume of the aerostat, assuming a constant temperature.

47. The effect of the temperature is much more striking.
The lowest cold temperature recorded on the surface of tge
earth was -55°C; the highest air temperature in the shade, +47 C.

The amplitude exceeds 100°. The ratio of the absolute extreme
temperatures will be:

T 275 -
LA 22 o680,

T, 273 + U7

This meens that only about 2/5 of the greatest volume of
the gas repository could be filled up for that reason.

48, Taking both factors into account in our calculations,
we find

a

- = 0.618,

(@

i,e., slightly more than 5/5 of the entire volume,

49, Clearly then, the aerostat cannot be filled up once
and for all for all the variations in temperatures and pressures,
as this will be too inexpedient at high pressures and low tem-
peratures, Actually, even though the buoyant force were to remain
constant the whole time, it would have to be at its maximum. The
above does not imply that the relative amount of the gas involved
in filling up the balloon must comprise 3/5. This quantity is, of
course, dependent on both the temperature and the pressure during
the filling-up process.
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If we introduce, in place of T in formula (45), the

0
maximum temperature T , and in place of po the minimum pressure
max
p_. , we shall then have
min
v T pmin
U T

This equation indicates the relative extent to which the
aerostat is filled at temperature T and pressure p.

50. For example, Tmax = hTOC, Poin = 730 mm Hg; now we

fill up the aerostat at 0°C and at pressure 760 mm Hg; we then
find

275 T30
7+ 273 0 = 082

U _
Us

or the aerostat must be filled to roughly 4/5 of the total volume,

Constant Resultant Force

51. We did not take into account heating of the aerostat by
sunlight and its cooling by radiation, such that the temperature of
the serostat will not be equal to the air temperature.
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But we did see that, by regulating the temperature inside
the aerostat, W€ could achieve & ~onstant resultant (4) or, in
other words, & constant buoyant foree (1).

From formuls (1), ve pind U = G , WheTe the buoyant force

Y
a

Qb is conditionally a constant.

This means that the volume will vary in inverse proportion to
the density of the air gurrounding the balloon.

52. Fliminating 7 from this 1ast formula by means of
a

equation (7), ve obtain

: P T
U_i”—b-o_g —?‘—,
y, © T

or the dependence of the volume on the change in the temperature
Ta and on the pressure P
a

In the course of several hours of flight, the air temperaturé,
and in particular the air pressure (the barometer reading), could
not have time to change very much.

Thus, when the temperature is being regulated, the change
in aerostat volume will be dependent golely on those very slowly
varying conditions, and not on the heating by the sun, ghading bY
clouds, cooling st nighttime, OF other factors.

5%. By differentiating this last equation with respect 1o
the variables Ta and p , W€ obtain
a



54, By means or equation (52) we may eliminate the buoyant
force Qb from this €quation; we then obtain

du BTa Bpa
— —1 ——— - ———— ,
u T jo)
8 a

for example, at 0°C (2730), a 10°C increase 4 temperature wijy

bring about 8 relative change in volume by 10 273, or about 27,

A decrease in pressure by 10 mm Hg at an initiai/pressure of 760 mm Hg
1 bri T

Vertical Movements of the Aerostat
As a Cause of Changes in Tts Volume

5. A still greater change in the volume of the g85 accompanies
the ascent or descent of the aerostat, which must be performed for a
variety or reasons, TFor example, in flying over mountains, in hover-
ing over both high and jow boints on the earth, in catching up with
& favorable air current and favorable temperature conditions, it jig
sometimes advantageous, and sometimesg imperative, for the airship to
perform vertical movements,

Iet us determine the relationship between the height H of the
point above geg level, the temperature, Pressure, and the rarefaction
or density of the air at that point,

56%, Everyone knows that the temperature of the air ge-
creases as the elevation above Sea level ig increased, Byt the law
Obeyed by thig change in temperature has yet to pe discovered, It
is Supposed, on the basis of observations, that the drop in tem-

Perature is more or less broportional to the height attained and isg
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about SOC per km of ascent, The drop in temperature with elevation
and vice versa can be explained in various ways.

57. From the standpoint of the mechanical theory of heat,
gas molecules accelerate on moving downward, so that the tempera-
ture of the gas increases, The speed is lessened in the opposite
direction because of the effect of the earth's attraction, and
this corresponds to a decrease in the temperature, Calculations show
that the extent to which the heat diminishes will be proportional to
the elevation of the place and will be independent of the oseilla-
tion amplitude of the gas molecules, while the extent of this de-
crease will be proportional to the molecular weight of the gas.

58. Thus, we find for oxygen about 10°C per km of ascent,
for for hydrogen (were our atmosphere a hydrogen atmosphere) a change
of 16 times less, i.e., less than 1°C per km.

These calculations are not entirely justified, since the
sun does not heat the upper and lower layers of air uniformly.

The temperature nonuniformity will have to increase still further

on that account. Moreover, these calculations are further invalidat-
ed by the fact that the lower layers of air and the surface of the
earth itself tend to continuously heat by radiation the upper, less
heated, layers. The ether waves tend to reestablish the temperature
equilibrium disturbed by the incessant action of gravity on the
falling and rising air molecules.

For the same reason, the theoretical law of decrease in
temperature in proportion to ascent, and the amount of that decrease
at 10°C per km of ascent, is also not entirely justified.

The cloud layers, the differing degree of air humidity, and
a8 host of other factors render this law of temperature decrease
capricious and elusive, like the weather itself.

59. The rise in the temperature of the earth as one pro-
ceeds deeper down into the earth, could also be explained from this
standpoint. The molecular weight of the complex terrestrial rocks
is far greater than that of air, so that the temperature drop must
be far more pronounced. For example, take aluminum oxide or
alumins,, A1205. Its molecular weight is 102, The molecular weight

of the oxygen molecule O2 is 32, on the other hand; thus we see that

the weight of oxygen is only one-third that of alumina, so that the
rise in the temperature of alumina will be three times greater than
the rise in the temperature of the atmosphere, i.e., about 30°C per
km; this is validated almost exactly: the heat conduction of
fragmented soil particles is very small, and therefore the lower
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heated layers heat the upper layers only very slightly.

60. But let us return to air, We wmay use another point
of view to account for the law of temperature decrease with eleva-
tion,

The temperature drop depends on the absorption of heat by
the air as a result of the work done in gaining altitude and in
expansion. The air has not only horizontal motion, but also
vertical motion, which must be accompanied by compression and expan-
sion, and consequently also by the heating and cooling of the air,

61. TIf we accept this alone as a basis, and assume that
the upper layers are not heated by rediation from the warm lower
layers and from other causes, we may arrive again, thgoretically,
at the earlier law, and at the same coefficient of 10°C.

U 71
We now have E— = — , where one and the same mass of gas
1 Y
initially has volume U1 and density y , but later a volume U
1

and a density y.

2. TFurther, designating the heat capacity of the gas with
volume held constant, or its specific heat, as c , and the mechani-
v

cal equivalent of heat as M , we find, on the basis of the law of
e

conservation of energy

c l—-dT.
1v Me

U=-1
™ 17

Here p is the pressure of the gas or the pressure per unit
area at a volume U and absolute temperature T,

63. But



. T U
p=D | a— e x5
1 T U
1
and here P corresponds tO g and T .
1 1
Accordingly,
By T 1
——--———d.U:—'yC_.—dT
v T 1M
1 e
or, geparating the veriables, W€ find
6k au A% 1 T
U P, voe 1T
Putting 71 1 ¢ = const, we now find
—ec — 1
p M
1 e
aT 4au

65, - const.

k9
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Integrating this equation and determining the constant of
integration, we arrive at

66. const * 1In @l): In CEllD,

from the 1ast formula, we obtain in turn:

1
const g

const
U1 Tl

68. Formulas (67) enable us to find the decrease in the
air temperature according to the given rarefaction U_ of the air,

)
1

888, We note that the value of the const in equation (64) will remain
& constant in accordg with the familiar broperties of gases, Actually,
for a known P the density 7 and specific heat ¢ of the gas will

1 1 v
depend on the nature of the gas, but the product y ¢ wi1jl neverthe-

1lv

less remain constant . Clearly; hence, the degree of cooling acecom-
pranying the €xXpansion of g constant gas wil] not be dependent upon
the nature orf the gas; the same holds for the heating attendant upon
compression,

Py T .
T =" =& , We find, on the basis of
T
P 1

69. Since we have

H<:,C

formula (67)
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1

T _ <§T;> const
T lT ’

1

whence

70. T <§€> 1+const
T~ NVl

71. Now, on imagining a vertical column of air endowed with
weight, we can set up the following differential equation to ex-
press the fact that the increase in pressure on the column 1s pPro-
portional to the increase in the mass of the column and to the ac-
celeration due toO gravity g:

Here dH gs the differential of the height H of the column of
air, g is at 45 latitude, apd is unity according to Iaplace. On
other latitudes, according to this scientist, we shall have

) g = 1 - 0.002552 cos 29,
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where @ is the latitude of the point in questionl

T72. 1In place of equation (Tl), we may find, on the basis of
formula (T70), the equation

-const -const
T+const l+const
Y dp = gy p * dH.
11

Integrating this equation and determining the integration con-
stant, we find

73. - const + 1 P [l _ <§%> 1+const ]
7 g
1
Th. Here const + 1 = 3.441 and T+ const = 0-2906.

Here we do not take into account the decrease in gravity with
height. This decrease amounts to about l/

600 in an ascent 5 5 km,
At higher altltudes the decrease in gravity cannot be disregarded ,*

¥All numbered footnotes are the author's. (Rit.) i
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is assumed +o be zero.

The height corresponding top and ¥
’ 1 1

), we obtain

75, From (T3

14+const

o . e ]
pl (const + l)pl

minating the ratio p/p y Ve find
: 1

Hence and from (70), eli

6. 718
'T E 1 _______._———’ ° H .
(const + l)pl

e aid of formulas (75), (63), and

From this equation, with th

(61), we compute

1 const
thiL:pT =[1" " 71% » ]
T (const + 1)p
71 v Py 1

78, Formula (76) may e stated &s8:
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-7,8T
N s S
1 (const + 1) P

and the gas density Y. And since the denéity is broportional to the

molecular weight and inversely proportionsl to the specific heat c
heat of the gas and directly'proportional to its moleculsr weight,

From equation (77), 1t is clear likewise that the degree of
rarefaction U of the atmosphere depends not only on the height
l .

of the Place, but also on the acceleration due to gravity and on the
gas density vy,

T9. TFor H = 1000 meters, using formula (78) we calculate a
temperature decrease of 12.8°%¢.
If we assume that parts of the atmosphere feature rapid

temperature, Then we shail obtain the complete Iaplace formuls,
Even though we derived the temperature decrease of 10°C per
km of ascent distance theoretically, this is stil1 not in agreement
with reality, for the reasons €xplained above,
Thus, Coxwell found an average temperature decrease or 4°¢
Der km in hig air travels, Biot and Gay-Iussac found 6°C, Sessure
found 7°C in this ascent to Mont Blanc, and Humbold found only
5°C.
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In general, experimental findings more OT less confirm the
view that the temperature decrease 18 proportional to the height of
ascent, but the actual extent of this decrease proves to be half that
which we calculated. It follows that the temperature decrease due
to vertical movements and the temperature increasec due to radiation
and other causes are, as it were, two equal forces yielding an
average temperature difference of 5°C.

80. We therefore assume in formula (78) a multiplier M 1less
than unity and close to 0.5, and we put

-Ty,8Ty

T - T =

1 " H,

(const + 1)p
1

or

81.

=

=1 - o8 8,

where At denotes the temperature gradient, SO that
H

Ty.8

H  (const +_l)p1

82, At

»



56

Clearly, At expresses the relative temperature decrease per
H

unit of H.
We now set up a differential equation similar to (71). Elimin-

ating T/T 1in this equation by means of (81), and separating the
1

variablés, we obtain

‘s

pl(l - AtHH)

On integrating this equation, we find

718
8k in (;{) = In (1 - At H).
17 PyotHE H

Whence, on eliminating At by means of equation (83), we
H

find

const+1
85. My, &

ﬁi - [l " (const + 1)pl | H] ;
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61), (63), (80) and this last

and then, according to formulas (
equation, W€ arrive at

%‘
const+l
u 7 ®h T8 M
—— = T 0 e— = {l - i & H - 1.
U y D T (const + 1)p
1 1 1

g and also to show

our formula
lete exactness,

87. 1In order to check
whether OY not the Iaplace formula features coOmp
we will derive it from equation (85).

nd from that equation:

On determining the height, we fi

Ll
—_—
_ (comst + 1 P1 {l»— (};%) const+l ] ,
Ty.e .

1

or, on the basis of (82)

il
e AiH [1 ‘QL-))COnS ' ] )

a8, T1f we expand the exponential function in this 1ast for-

mula into & geries, VW€ obtain
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1 n b
o ;;;.{;Onst + 1 T :> [ const + 1 " In CT%DJ

T Ol —_r 1 (_1) L
123

const+1 1°2°3°L4 “const+1

NN

) JaNd (c;Lst+l) 1n CP ;> 1l+ {[
ba

const 1

el -m'm@] L

l/ The expression in brackets with the multi
A¢

Plicative factor
is approximately the height H,

We therefore write:

At
1 H . )
H = 1 °1n(—p—><1+7 H

AtH(const + 1)

Or, in accord with (82):
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89. On the basis of (81), we see that At expresses the
H
relative decrease in temperature per unit of ascent distance, i.,e.,

ot B = SL | The product (At < H) will be the total relative de-
H

T
1

crease in temperature with ascent to a height H, Consequently, we
may restate the formula as:

H——'ln<§—1><1+ “

Here At is the temperature difference of the two localities,
and T 'is the absolute temperature of the locality of the lesser
1

altitude.

The nature of this formula is almost the same as that of the
laplace formula; it shows that the height H is inversely proportional,
and is directly proportional to the mean absolute temperature of the
column of air, But there is a slight numerical difference in the
determination of the height, which is quite understandable, since
only Regnaud, long after laplace, gave sufficiently exact coefflclents
of expansion of gases,_and thereby made it possible to determine the
absolute temperature T

90. We can also restate formula (89) in a completely Iaplacian
form. Actually, we find from equation (82):

Gay -Iussac found the number 0,00375 for the expansion coefficient,

& figure later confirmed by Dulong and Petit, Dalton arrived at
almost the same value, Rydberg obtained O, 00365, and Magnus ar-
rived at almost the same, Regnaud obtained about 0,00366. We have
adopted this last figure, of Regnaud.
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But since T = 273 + t and T =273 + %, where t and t are the
1 1 1

usual centigrade temperatures,

and

Ney ° H 2Tl-tl+t 2°273 + &ty + T 273 ty + ¢
14+ = = = = +

2 2T etT T 2d
1 1 1 1

Now, in place of formula (89), we obtain

Glias 1+?S;1—t—t-l]log<p—l>‘
p

s —m
- 273
lelg log € L
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Here log € = 0.4343, and the reciprocal of the modulus 18
2,3026.

The preceding formula is more elegant than this one, but we
derived it in order to afford a better comparison with the Iaplace
formula.

Py 275 Po

Note that y, 180y it is equal to the ratio of

. —

71 T 70

the air pressure at zero temperature to the air density at the same
temperature; we see then that this is & constant for any gas.

Consequently, putting g = 1 (for b5° 1atitude ), we find the
height in meters:

H = 18405 (1 + g(tft)) 10g (%) .

1092

This formula differs from the Iaplace formula golely in the
coefficient sccompanying (£ + t), which according to Iaplace is
1

equal to 1000, The error in the height according to the formula of
the renowned astronomer could be significant when the temperatures
(b1 + ) smount to 1arEe gums, but this will not be normally en-

countered. We repeat that with this correction Iaplace's formula
could be assumed ideally exact [cf. (87) and (88)1.

We have to use rormula (89) or (90), or better yet formula
(87), which has absolute exactness for a gaseous stmosphere, Pro-
vided the temperature decrease is strictly proportional to the
clevation [instead of (87), we could have also used sormula (94)1.

9l. Ve should not forget that our aim is to determine the
expansion of the aerostat volume &as the aecrostat gains altitude.
Formula (86) may serve this purpose. For in this formula,

Ty,8 o
according to (89) and (82), — . . § = — , so that we
(const + 1) 1 T,

can eliminate M from the exponent in formula (87); we then find
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I.7.8
171 -1

Y V4
JAY? . .
U

7 1

92,

where At is the temperature difference between the two boints, ex-
Pbressed in centigrade degrees,

93. Likewise, instead of formula (85), we obtaip

P T17 g
—_ <i - éi) 1 *H

b
Pl Tl Far» pl
whence
ok, Cpl)

. T
Ty " 78 log cc( —L
T, - At

95.  According to formuls (92) or (86), we may compile g
table of the ratios of filling of the aerostat with gas for an
ascent from sea level +o some height,

We assume N = 1/2 ag a start, i.e,, a temperature decreage of

5°C for every kilometer of ascent! yl = 0.001293; g = 1 [ for

latitude 45°  of, formula (71)]; b, = 103.33 kg per square decimeter;
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const = 2.441; T =273° i.e., O°C.
1

We find the temperature from formula (78) and convert it to
centigrade degrees (cf. Table 1).

We present also Table 2 for the variation in air density up
to an altitude of 100 km.

9T. Clearly, from Table 1, an ascent to a height of 6 km, for
instance, would mean that the aerostat could be filled while below,
at sea level, with gas to only 1/2 its total volume. The tempers -
ture decrease is proportional to the increase in height only for
moderate heights; further up it will increase not quite so rapidly,
80 that the height of the atmosphere will be far greater than in-
dicated by our formula. In general, the formula can be applicable
to the extent to which the law of temperature decrease which we
adopted remains applicable, Up to 10-20 km, the formula will yield
results reasonably close to reality.,

98. If we assume no change in temperature, then equation
(89), for instance, will lead to

'7lg

— . A

where e 1is the base of the Napierian logarithms. Assuming the
same conditions as before, but a constant temperature of OOC, we
now proceed to calculate the degree to which the aerostat will be
filled (ef. last column in Table 1). On comparing the last two
columns, we see that less hydrogen will have to be taken on when

the temperature is constant, but the difference is slight even at

a high altitude; for example, at an ascent to 10 km, in the presence
of a progressive decrease in temperature, about 0.300 of the balloon's
volume will be filled as compared with 0.283, or just about the same
fraction of the volume, when the temperature does not change, We
may note, further, that this difference will increase gradually,
will attain a peak at an altitude of 6 km, and will then decline and
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vanish at a fairly significant height

U /U at that height will be the same,
1

temperature in the atmosphere decreases or not.

s 80 that the filling ratio
regardless of whether the

99. TFor low ascents, formulas (86), (87)
simplified -- the results will come out the same

Thus, from equation (86) we have

» or (92) may be

M
consTFI-M

H=zl?c [1@;) J.

If we expand the power funct

ion in this equation into a
series, we obtain

1

T (D), 2 AP
H=AtH {const+1-ﬂ ln<>>+1-=2[ :m()] !

const+1-T

+

N 3
1°;'3 [ const+1-T " In <Z%> ] + .. } a

This is a rapidly converging series,

Restricting ourselves,
therefore, to the first term in brackets, we

obtain
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100. T 1n (Z%)

H =

(const + 1 - ) At

The simplification may be carried even further 1if wve also

expand 1n.<?l into a series. When this is done, W€ find

Y
3 -
71 P
101. . S l\
y 71 3 7
— 4+ 1 — + 1
L*/ Y

Noting that this is also a rapidly converging series, and
again, dropping all bub the first term, in the denominator of

71
which —~ 1, we find
7

102.

In <?1> = - 1.
Y

¥

Accordingly
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o1 (x -1)
10%. 7
H= *
(const + 1 - M)At
H
whence
77 U const + 1 - 1
- = - —_.-l+ ° At H *
H
Y Ul il
On the basis of (82), on the other hend, eliminating oo,
H
we obtain
10k, (const + 1 - M)y,8
— = l-— ° H .
U (const + 1) p
1 1
105, Assuming here, for sea level and normel conditions:
2
y = 0.001293 kg/dn?, c = 0,169 cal, g = 100 dm/sec , M =
1 ' v e L2ko
° = 103.33 kg, and M= ]/2, we

cal/kgedn, T = 273" (or O C)r, 1
1
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find const = 2.441 ang

106. = 1 - 0.10748H,

U
e

where H should be expressed in kilometers.

Thus, when H = 1 km, the filling ratio éi will be 0.902, and
1

will be 0.896 according to the exact Table 1; the error is about
1/150 of the quantity to be determined. It is clear that this last
formula could not be applied for ascents exceeding 1 km, but it could
be adapted to plateaus of any elevation except that the constant
factor will ve different.

107. Formuls (lOO) is more exact, and from it we obtain

7y U (const + 1 - m AtH
(5= 1w (- ',
7 1 M

Or, on the basis of (82) ang conditions (105):

U (const + 1 - ) 718
In (T) = * H = 0.1075H;
1 (const + 1) Py

1g (—é—) = 0.04668L47.
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108. If, for example, H = 1 km, we fing Fl = 0.898, and the

error (Table 1) will now be far less, to be specific about 1/500 of
the quantity in question. Moreover, this last formula may be ap-

U
plied over a far wider range. Thus, putting H = 10 km, we find E%

= 0.3413, whereas from Table 1L we find about 0.3. Therefore, the
error is not very great in this case, too.

109. Apropos, according to the Babinet formula we may provide
a simplified formula for the height as a function of the ratio pr/p

of the barometric heights or pressures at two extreme points. For
this purpose we take formula (89). In this formula, we find, by
expanding the logarithm in a series:

Py Py J
= -1 = -1
p
ln(—-l->=2 L r={ 2 +
P P, 3\ p
- =+ 1
p+l p+ J

Discarding all but the term with pr/p close to unity, we ob-
tain -

1n<——>=2 —_
D D, + D

Consequently,
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2p, Py - P At
H= — (}—-—-——-{)(}.+ 57

Here At is the temperature difference between two points,
which is usuvally positive.

110. ILet us bear in mind (in calculating the coefficients),

P P 1 Py
that — = — ° 575 i.e., — equals the ratio of the pressure p. at
71 79 °D 71 0

T

zero temperature to the density at that temperature multiplied - s
for which see formula (90). 275
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III. OF WHAT MATERIAL SHOULD THE AEROSTAT BE MADE?

111. The formulas and theorems derived here are valid only

if the mass and the couposition of the gas £i1ling the aerostat re-
main unchanged, i.e., if the envelope completely jsolates the light
gas from the atmosphere. And this would hardly be possible if an
envelope made of material of plant or animal origin were utilized,
since all these materials are permeable tO gases, evel when there are
no visible holes in them. This depends not on the difference between
the pressures inside and outside the aerostab, but on the independ-
ent, very rapid, and never ceasing motion of the gas molecules, which
in one way or another will penetrate any envelope of organic origin.

Thus, the serostat will not only lose some of the light gas
with which it is filled, but will also acquire a proportionate
amount of the heavier air, forming a mixture of gases, including the
light gas itself. The volume acquired will be 3 to 4 times less
than the volume 1ost (depending on the nature of the gases inside
the aerostat) in sccordance with known diffusion laws.

. Thus, two phenomens. are going on at the same time: a decrease
in the volume of the interior gas and an increase in its mean den-
sity. As & result, the buoyancy of the aerostat will decreasée, and
the opposing force, i.e., its weight, will increase, SO that the aero-
stat either descends or tends to descend.

If only 1t were €asy to expel the air drawn into the envelope
and replace it with light gas! Bub in practice this 1s impossible
without releasing all the gas in the envelope.

An organic envelope is infleammable, and this constitutes &
serious inconvenience, since it eliminates any possibility of uti-
1izing fire and £ire-operated engines on board the aerostat. In fact,
a single spark or jet of incandescent gas OF air might set fire to
the hydrogen and the tenuous envelope of the aerostatb and cause a
catastrophic crash and the death of the crev.

It would be preferable to use a metallic material in building
the aerostat. Moreover, such a material would be impermeable and
fire-proof, as well as endowed with a number of other advantages such
as: strength, durability, cheapness, and nonhygroscopicity. By
making it safe to use fire on board, it would also make it possible
to vary the temperature of the gas over & certain range, by means of
the combustion products, and thereby facilitate vertical control of
the aerostat without loss of gas and ballast.

112. But despite its advantages, this material also has cer-
tain shortcomings. First of all, metal is heavy and the question
arises: could an aerostat raise & massive metal shell aloft?



thin that it would defy successfuyl fabrication or rapidly tear,
crumple, curl up, or rust awvay. Finally,.might not the stiffness of
the metal constitute an insurmountable obstacle to the use of this
type of material?

Actually, the first attempts o design g spherical metgl
aerostat ended in coumplete failyre*. But then Schwarz built an
elongated metsl dirigible ang successfully flew it. Thus, the view

113. I shall calculate the radii of spherical aerostats made
of metal sheet of different thickness ang designed to 1ift only the
envelope and the gas.

We have

L 3 2
3 R (7a - 7g) = bnR q

nv’

where 1 is the ratio of the Circumference to the diameter; R is the
radius of the sphere; g 1s the weight of a unit area of the en-
env

velope, and yair - 7gas is the difference in the densities of the

air and the gas. From the €quation, we find

ey

7air gas

*In 1831, Dupont-Delcour ang [Marey] Monge designed g spherical aero-
stat made of copper. Their experiment was not successful.



7>

Clearly then, the envelope may be arbitrarily massive or
thick, provided the radius or size of the sphere is proportionately
large.

114, If we assume that the aerostat is filled with hydrogen,
we may calculate as follows, using formula (113).

Consider an aerostat made of aluminum 0.08 mm thick; one
square meter of this envelope weighs about 0.2 kg. The diameter of
the sphere will be one meter. Do not imagine that this material is
very frail: T have g calling card in my possession which is Just as
thin, yet to the touch it feels Just as tough as an ordinary calling
card made of thin cardboard. We could use copper foil to achieve
the same results, but it would be much softer. Sheet brass 0.07 mm
thick, i.e., almost the same thickness as the aluminum, would re-
quire a diameter of 2.8 meters. Iron of the same thickness is much
stronger and slightly lighter. Iron or copper material twice as
thick, one square meter of which weighs about 1 kg (1.14 kg to be
precise), would require a diameter of 5.7 meters. Sheet tin, like
that used for the lids of shoe~polish cans, etc., is a good example
of material of this type. If we used material twice this weight,
for example, the tin used to make cheap tin lampshades, molds for ice
cream, etc., then the diameter of the sphere would have to be twice
as large again, i.e., about 11.L meters.

115. It would be most difficult to make a spherical metal
aerostat, so I do not suggest that this shape be used for the actual
construction: my purpose is solely to indicate the size of the
sphere in relation to the welght of the envelope and the degree of
feasibility.

Aerostats made of the same materials but with twice the
linear dimensions would be capable of 1lifting not only their own
weight but also a useful load equal to the weight of the envelope.

116. The problem of coping with meteorological influences
makes heating the gas essential. Only by controlling the tempera-
ture of the gas can we hope to achieve vertical control without
loss of gas and ballast. No other means could possibly counteract
the powerful heating effect of the sun's rays* (on this point cf.

*Incidentally, I might point out that Meudebec agrees completely that
heating is the best way to obtain vertical maneuverability, pro-
vided there is no danger of a conflagration consuming flammable
envelopes.
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K. Tsiolkovskiy, "Prostoye ucheniye o vozdushnom kxorable" [A simple
treatise on the airship]). And once fire 1s employed, envelopes
which are nonflammable or at least not susceptible to fire hazards

will be required.

117. As for the problem of coping with the stiffness of
metallic materials, there will be time enough to deal with this
highly involved question later.
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1y. CERTAIN CONDITIONS WHICH MUST BE SATISFIED
BY ANY DIRIGIBLE -

-~

118. The use of metallic material 1s not a prerequisite for
the maneuverability, put it is & prerequisite for the practicality,
safety, cheapness, popularity, and jeve lopment of airships. More-
over, this waterial may ve considered indispensable to vertical
maneuverability and vertical control. The other conditions which an
serostat must satisfy are the following.

a)¥ It must be slender and taper horizontally at both ends,

so as to offer minimum resistance to the wind when moored to the mast
or moving freely through the gir. In this respect, the aerostat must
resemble a fish, bird, or cruiser.

b) Not only the envelope put all parts of the aerostatb nust
come as close as possible to satisfying this condition.

c) It must be possible to vary the volume of the aerostat,
or the volume of the gas envelope, without impairing the smoothness
of its shape and without causing wrinkles which might lead to in-
creased drag or cracks. vVariation of the volume is necessary to en-
gble the light gas to expand and contract freely in response to the
temperature and pressure changes encountered during an ascent to
great heights.

a) The serostat must be sufficiently strong, 1.€., it must
offer sufficient resistance to the pressure exerted by the gas, Yo
its own weight, to wind loads, and so forth. This 1is achieved by
giving a certain thickness to the parts of the serostat and by
naking them of the best available materials.

e) The aerostat must be in stable equilibrium in the hori-
zontal position; in other words, it must have & stable direction of
the jongitudinal axis. The horizontality of this axis must not be
disturbed by changes in engine load, even when the engines are
stopped OTr started. Its stabilitby must also remain unimpaired when
people move around in the gondola, and in the presence of irregular,
i.e., nonhorizontal, ponlinear, OT ponuniform motions of the air
gurrounding the serostatb.

) The aerostat must be capable of ascending and descending
without losing gas OY ballasdb.
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In Specifying thege requirements, we simultaneously describe
the gas airship that meets them, as I shall prove later by calcula-~
tion. In due course, I shall examine the methods of building an
aerostat ang controlling it in flight, and several other questions.
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V. BRIEF DESCRIPTION OF A METAL AIRSHIP*

119. Figure 1 (right) shows the parts of the aerostat pro-
Jected onto a vertical plane passing through its longitudinal axis,
in other words, a longitudinal section.

Fig. 1 (left) is a transverse section along the line A-B, or
the projection on a transverse vertical plane.

In general appearance our metal alrship resembles an ordinary
dirigible. The shape of the envelope, the propeller, the rudder,
the gondola, and the motor are all more or less the same.

120. It is even easier to demonstrate the possibility of de-
signing an elongated metal bag capable of changing shape and even
of folding flat without suffering damage and without losing its
generally smooth shape than T thought when I made my earlier con-
tributions on this subject (Aerostat metallicheskii, upravlyaemyi
[The Metal Dirigible), and Prostoye ucheniye o vozdushnom korable
[A Simple Treatise on the Airship]).

121. Join two rectangular strips of cardboard so that a
shape identical with the longitudinal section of the aerostat (Fig.
1) is formed. Then glue thick baper across one or both faces of
this elongated cylinder; you will end up with something in the
nature of an elongated drum or sieve (Fig. 2).

This constitutes a model of the aerostat, though one of
fixed volume.

122. But with a sharp knife we can cut the flat sides of
this bag into parallel strips perpendicular to its longitudinal
axis (Fig. 2).

Now, by squeezing the curved walls of the cylinder, forcing
them closer together and allowing them to spring apart, we can show

*This description is intended to give the reader some idea of what
a metal aerostat is, so that he will be in a position to understand
what follows; however, the description lays no claim to complete-
hess, nor is it by any means the last word. On the contrary, as
we shall see below, important modifications of the airship design
described are both possible and useful. I shall devote a special
chapter to an analysis of these modifications.
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that the volume and shape of the bag can be made to vary quite dras-
tically without any folds being formed. But the rub is that gaps will
form between the vertical strips; these gaps will be the narrower the
more elongated the bag and the thinner the strips themselves (Fig. 3).

AR —~
liiltz*4k e \
: 5
Fig. 1
A
Fig. 2 Fig. 3

123. It will be of some help if the strips are made in ad-
vance out of corrugated material, such as corrugated paper, the cor-
rugations in which should run the length of the strips; Fig. b il-
lustrates one such strip.

On making a bag out of strips 1ike these, but this time pre-
joined to form a single whole (Fig. 5), we obtain a leakproof paper
or metal tank (gas holder), sealed on all sides and capable of a
wide variation in shape and volume under certain conditions, de-
terminable by mathematical analysis in conjunction with data on the
properties of the materials, and even of folding f£1lat without burst-
ing or crumpling (of course, only the side walls fold flat).

1ok, The metal envelope of our airship can be constructed in
the same O & similar manner. This envelope will be made of corru-
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gated metal sheet with the corrugations following the circumference
of transverse sections through the aserostat (Fig. 1).

125%, But besides this thin corrugated sheet, the envelope
will also have certain more massive parts: there will be two pairs
of longitudinal girders, running the length of the envelope at top
and bottom, and a aumber of circular transverse ribs, resembling
barrel hoops, serving to connect these girders together (rig. 1).
Fig. 5 will also help the reader to understand the arrangement of
the envelope and its stiffening members. The ends of the envelope,
even though they are still more solidly reinforced, form smooth
conical surfaces.

106%, TFig. 1 shows how the gondola 18 held in place, that is,
the suspension of the passenger cabins, cargo and machinery compart-
ments, etc. It hangs from two systems of vertical chains, which are
anchored to the two upper longitudinal girders. These chains pass
freely through the bottom glrders. Thus, the top of the envelope
is pressed inward along its entire length, soO that the gas inside
the aerostat 1s constantly under a slight pressure. When it expands,
the envelope swells, the gondola 1s raised, and part of each chain
runs through a gastight seal located inside the aerostat; when it
contracts, the envelope closes up, its volume diminishes, and a part
of each chain is pulled outside.

127. When the chains are connected thus, the aerostat is, as
it were, always full (rounded out), and its longitudinal axis will
be fairly stable. But this requires that the chains be connected in
some way to the pair of lower girders. Only then will the equilibrium
or rather the horizontality of the longitudinal axis be stable in
response to random tilting of the aerostat. When the gas expands,
for example when the aerostat rises, Or when the gas is compressed,
for example when it descends, the chains must be disengaged from the
lower girders 1n order that the envelope may assume its normal shape

(Fig. 1).

128. The chains in the middle section of the aerostat are
never coupled to the bottom girders, and this is a very important
point, since it allows the gas to expand and contract slightly with-

out the necessity of releasing the other chains.

129. Fig. 6 shows how the upper longitudinal girders are
connected to the hoops and the envelope; the connection is hinged
and almost frictionless, SO thaet the envelope 15 free to rotate
about the girder. A similar connection is used at the bottom. But
this joint is not gastight; gas will leak through it. 1t is there-
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fore covered by a strip of thick, soft, impermeable material running
the length of the envelope. There will be four such strips, cor-

responding to the number of longitudinal girders. Fig. 7 depicts
this seal in transverse section.

Stiffening

Envelope

Longitudinal girder

Fig. 6

1306. The design of the gondola will be clear from Figs. 1
and 8.

Gas

Fig. 7
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131. The tops of the chains, remaining inside the envelope,
may consist of one or several links; likewise the exterior part of
the chains which never goes inside the envelope. But the middle sec-
tion of the chains, which slides through the bottom girders, is made
up of numerous links. The design of this part of the chains is clear
from Fig. 9. Such a chain is capable of bending in all directions,
like a rope. A short link made of very strong material is inserted
between pairs of longer links. These short links also have a re-
cess into which fit special pins used to connect the links and the
envelope, except in the middle of the envelope where the chains are
always free. It is clear from this description that the chalns will
never break as the gondola rocks and heaves. The free-sliding
chains may be replaced by wire ropes or by ordinary chains with
special provision for sealing off the gas.
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132. The black tube inside the envelope (Fig. 1) is intended
for heating the light gas and varying the 1ift force acting on the
aerostat over a wide range. Increasing the temperature of the gas
and of the envelope not only has the effect of augmenting the 1lift
force, but is especially useful, and even imperative, in temperate
and cold latitudes where snow falls. Snow will melt and run off a
warm envelope, before it can add to the weight of the aerostat or
spoil the envelope by turning to ice under the influence of, say,
the sun's rays or a warm air current. Thick snow may accumulate on
certain portions of a cold envelope, however, and the horizontality
of the longitudinal axis may be affected; removing the snow by mechani-
cal means is no easy Jjob.

133. The black tube 1s heated by combustion products from
the alrship engines., These products are allowed to escape into a
special temperature regulator (Fig. 1, Fig. 10). There they en-
counter two openings partially covered by a slide valve, which 1s
adjustable manually (or automatically), so that one portion of the
hot gases is expelled through an exhaust pipe and carried off by the
slip stream, thereby averting any exposure of the passengers in the
forward part of the gondola to the fumes, while the other portion of
the gas is deflected through a speclal vertical branch into the black
tube inside the envelope, which it leaves in the rear part of the
envelope, without having polluted it. ’

The distance between the envelope and the gondola varies, so
the exterior exhaust pipe must be somehow adapted to meet the situ-
ation.

134. Usually, both branches will be half-open and the light
gas will be heated to a certain temperature. But as the slide valve
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is displaced, the temperature of the gas will either rise or fall.
This provides a means of controlling the 1ift force acting on the
aerostat, and consequently a means of controlling its vertical motion.

135%, When the serostat is not in translational motion, the
horizontality of the longitudinal axis ig insured by means of a very
slight displacement of the gondola relative to the envelope. This
displacement is effected by means of the dilagonal ties visible in Fig.

1; the displacement is accompanied by a deflection of the chains
through a very small angle (not greater than 5° to 10°).-

Fig. 10

When the aerostat is in rapid horizontal motion, on the other
hand, there is another, though less direct method available -- this
involves the adjustment of the horizontal control surfaces which act
somewhat in the manner of a bird's tail. These surfaces, which can
be rotated at will, are driven automatically by a small motor¥.

136. Instruments ipdicating the pressure difference between
inside and outside the aerostat (manometers) must be placed in the
central lower section of the envelope. When the pressure is ab-
normally high, the manometer will set off an alarm signal. The same
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thing happens when the pressure is exceptionally low, and thereby
threatens to disturb the horizontality of the longitudinal axis;
only then the alarm will ring at a different pitch. Finally, if
ever the pressure threatens the integrity of the envelope, a safety
valve in the stern end of the envelope will open automatically to
release the gas and prevent an accident.

157. A catwalk, not shown on the drawings, which serves to
provide access to the most Important parts of the envelope, runs
around the envelope, along the four girders. Fig. 1 shows, to a
scale® of 1:500, a metal alrship for 200 passengers, as long as a
large ocean-going steamship.

¥In the present [Russian] edition, the scale of Fig. 1 is about
1:2300.
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VI. THE SHAPE OF A DIRIGIBLE

Shape of the envelope

138%. The chains supporting the gondola are not usually
connected to the top of the envelope, as in our case (Fig. 1).

I have been able to think of no improvement on this
system. Suppose, for instance, that the chains were attached to the
sides of the aerostat, as in almost all soft-envelope designs. 1In
the first place, the chains would be extremely long and consequently
produce additional resistance to the motion of the airship. In the
second place, a well inflated aerostat would be in no position to
increase its volume further, and might burst or lose a portion of
its gas if an attempt were made to do so. If it were not full,
then the horizontality of the longitudinal axis of the envelope
would not be stable: the aerostat would pitch or "peck," now at the
bow, now at the stern. In order to eliminate this "pecking,"” we
would have to have a ballonet, containing a variable amount of
air, inside the envelope. This ballonet would have to be huge in
order to satisfy the practical requirements relating to the ex-
pansion of the gas; but it would have a host of disadvantages,
which it would take much too long to go into here, and would be
simply infeasible in relation to a metal aerostat, since it would
cancel out the advantages of using metal for the envelope. Actually,
the ballonet could be made only of organic material, which is affect-
ed by diffusion. Consequently, after a certain time the hydrogen
would mix with the air filling the ballonet, and eventually we would
be harboring in the interior of the aerostat a "fused, loaded bomb"
capable of going off at any second and scattering the metal envelope
"o the four winds" in the ensuing explosion, i.e., we would make
it possible for air to get into the aerostat. And then what would

be the use of a metal envelope in the first place?

139. For the same reason (difficulty in varying the volume),
we cannot suspend the chains from the bottom of the envelope or the
bottom girders. There are still other reasons against attaching the
gondola in any other way than the one contemplated.

As for the rocking of the gondola as a result of this method
of suspension, this problem may be eliminated by the use of diagonal
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transverse and longitudinal (Fig. 1) braces (of variable length ).

140. Suppose that the envelope is soft and shaped more or
less like a fish. We blow a certain amount of light gas into this
envelope and allow it to rise into the air. The shape of the gas
or the envelope will depend on many factors, for example:

a) on the extent to which the envelope is filled with gas,
or the gas pressure;

b) on the geometrical properties of the soft surface it-
self; thus, a highly inflated envelope may assume the shape of the
most varied solids of revolution; even irregular shapes of in-
finite variety are possible;

c) on the mass distribution of the envelope over its sur-
face, i.e., the envelope cannot be of constant thickness, and this
fact will have an effect on the envelope shape, particularly when
the envelope is not highly inflated;

d) on the total weight of the envelope in relation to the
1lift force;

e) on the relative load;

) on the distribution of the load and the manner in which
it is secured.

Thus, depending on the distribution of the load, a soft en-
velope may assume one of three principal shapes shown in Fig. 11.

141. TIet us narrow down the problem and return to a metal
serostat conforming to a certain design.

In the folded form, it has the shape of an elongated
cylindrical box (Fig. 2, Fig. 5) with flat and likewise elongated
sides.

These sides form two equal planes that almost coincide, so
that the height of the cylinder, or the distance between these
planes, will be comparatively small. When the aerostat is in-
flated with gas, it assumes a certain shape, (Fig. 1). The middle
gection of the aerostat remains essentially cylindrical, but the
gides become more or less rounded.

142, The actual shape of the envelope will be clear from
the longitudinal section (Fig. 1) and the transverse sections
(Figures 1, 13, 14, 15, 16).

The longitudinal section varies, but it obviously depends
on us, i.e., on the geometrical properties of the flat sides of
the cylinder (Fig. 2, Fig. 5). The smooth curve bounding the
section may be expressed by some equation chosen as our needs
dictate, i.e., in designing the aerostat,
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We cannot give the transverse section of the envelope any
ghape we please, however, though theoretically the shape depends on
the distribution of the mass of the envelope among its several
parts, on the manner in which the gondola is suspended, and on the
longitudinal tension of the corrugated surface of the aerostat.

Fig. 1l.

n ofa Cylindrical Aerostat

Shape of Transverse Sectio

T have used, in general, two methods to predict and clarify

s chapter are applicable to a soft envelope

l‘I‘he equations in thi
nd accordingly are of more

no less than to & metal envelope, &
than narrow interest.
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aeronautical phenomena,

143, The first of these is g burely analytic approach; but
this has proved to be either very complicated or almost totally un-
suitable for determining the shape of an airship, so that I have
solved only certain Special cases,

1. The Hydrostatic Model

14h%,  The second approach is an empirical one, involving
the use of simple analysis. For example, if we make g small bag
the same shape as the aerostat, from some 80ft, impermeable and in-
elastic material, and immerse this bag in water, then the bag, placed
in a situation similar to that of an aerostat and full of air, will,
when loaded, assume the same form and, in general, will have all
the properties typical of an aerostat containing a light gas and
immersed in air,

1ks5, Consequently, using a clean water tank bounded by
flat glass walls, we shall be in & position to visualize (and in-
deed the shape of the aerostat, and to solve certain problems re-
lating to the stable horizontal direction of its longitudinal axis.

146, For those desirous of performing such eéxperiments, T
have the following words of advice: use an ox bladder or a large,
even though very irregular, rubber bag with the openings stoppered ;
but whichever you use, enclose it in a well-cut and carefully sewn
canvas or calico bag of the chosen shape, The impermeable rubber
bag is fitted inside this bag, within its more or less irregular
folds. It is also convenient somehow to attach a load to the
calico bag. A sheathing of lead plates, sewn to the calico but not
interconnected, could also be attached to the bag in order to in-
crease its relative weight without affecting the flexibility of
the parts,
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2, Thread Model¥*

147%, This immersion technique is particularly valuable in
solving the problem of the stable direction of the longitudinal
horizontal axis of the dirigible; it is not quite so convenient
for determining the shape of the transverse section, and there-
fore I have tried another, likewise empirical, approach., T toock
a thread 88 cm long and attached 12 equal loads (g , 2, qj,...,qlg)

1
at equal intervals along it (Fig. 12). This thread, with or without
the loads, represents the ponderable or imponderable envelope of the
aerostat, or rather part of that envelope, a strip bounded by two
planes normal to the longitudinal axis.

Fig. 12,
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I tied the ends of the thread and laid it in a circle on
e horizontal wood board. I then attached thin threads to each of
the 12 loads (q , 4 , G , «++, q__) 8nd suspended little paper bags
1 2 3 12
(p , P, pB, cery p12) fi1led with different amounts of sand from

the free ends of the threads, in such a way that the welght of the

sand, together with the weight of the bag, was proportional to

the distance y between the point of attachment (q , @ , Q@ , se=, G )
I 2 3 12

of the thin thread and the x-axis.

The pull of the paper bags represents the gas pressure inside
the aerostat, which will always be normal to an element of its sur-
face; consequently, the threads attached to the bags were wound around
light grooved wheels (k , k , k , ..., k ) with a hole in the center

' 1 2 3 12
to permit them to be pinned to the wood board. With the aid of these
pulleys, by moving the pins about which they freely rotate, it is
possible to arrange the threads attached to the paper in such a way
that they bisect the angles of the thread polygon, i.e., 80 that
they are always normal to & smooth curve drawn through the ver-
tices of this polygon.

Actually, the pressure would have to be normal not to
elements of the curve, but to elements of the surface of the aero-
stat; however, in view of the great length of the aerostat and a
certain symmetry of the section, the result is almost the same,

148, The point where the threads are joined at the end of
the main thread is nailed fast to the board, or we may suspend from
it & locad P (representing the weight of that part of the gondola
corresponding to the width of the section in question) such that
the point becomes fixed. We now raise the board into a vertical
position, making sure however, that the x-axis remains horizontal,
so that the main circular thread (envelope) is elongated upwards,
and an angle, obtuse or acute, depending on the circumstances, is
formed at the lowest point. The result is that 1) the threads
supporting the paper bags are no longer normal to the elements of

1
the envelope , and .2) the masses of the paper bags are no longer
proportional to the heights y or the distances between the loads
on the envelope (q , 4 , 4 , +++, @ ) and the x-axis. These
1 12

0 .
I.e., the direction of the paper-bag threads is no longer along the
bisectors of the angles.
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differences must be corrected by moving the pulleys and changing the
paper-bag 1oads. The result is & new but smaller deflection, which
is corrected in the same manner, and so On. The whole procedure

is actually guite simple.

T placed & sheet of white writing paper underneath the thread
representing the aerostat envelope, and on it traced the transverse
section. I then cut out this sheet with a pailr of scissors, round -
ing off the angles due to the discontinuous nature of the loading
and examined it carefully.

149, 1In the different experiments the x-axis lay at dif-
ferent distances from the 1low-point of the cross section but
_in the first experiments passed right through that point, 1.€., the
pressure difference at the low-point was agsumed to be Z€rO. The
ratio of envelope weight to 1oad (or the loaded gondola) was 8180
varied in the different experiments.

In other experiments (F, G, H in Fig. 1%), the load was
guspended from & chain, the other end of which was attached not
to the low-point, put to the diametrically opposite upper (not
the highest) point of the envelope; the lower parts of the chain,
which passed through the interior of the serostat, was free to slide
over the bottom portion of the cross section.

These experiments were supplemented by fairly simple calcula-
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150. When a 1cag is attached to the low-point of the cross
seéction and when the X-aXls passes through that point, i.e., when
the pressure difference at the low-point Vanishes, the shape of the
Cross section will more ang more closely approximate a circle, as
the weight of the load decreages in proportion to the weight of the
envelope (Fig. 12, A, B, C); thus we see that at zero load the cross
section becomes gz circle (D in Fig. 12); the theory is thereby con-
firmed; but in the case of an imponderable envelope, or when the load
is infinitely large compared to the weight of the envelope, the
Cross section is not reduced to two parallel threads, but retains
an appreciable width (A in Fig. 13).

151. When the X-axis lies below the low-point of the Cross
section, i.e., when the bréssure difference at the low-point is
greater than zero, but the methog used to attach the loag is the
Same, then the cross Seéction will be the closer to a circle the
lower the X-axis, i.e., the greater the pressure difference (E in
Fig. 13). 1In this experiment the envelope was imponderable, i.e,,
the 12 loads were not attached to the main thread; the pressure at
the low-point was expressed by a gas column b - 2/3 D (Fig. 12).

the ratio of loag to envelope weight varies progressively, thus:
1, L/Q, L/B, and 0, i.e., in the first case the load was equal to
the weight of the envelope, in the second case 1t amounted to half
the envelope weight, and so on.

This method, as well as the usual method of Tastening the loagd
to the sides of the €nvelope with strings (Krebs ang Renard, Dupuy
de l'Homme) has the disadvantage that the cross section contracts
sharply in the horizontal direction when the Cross-sectional ares

tion, so that the area remains almost the same; the corrugations of
the envelope will be heavily shortened, and the envelope itself
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severely bent, and, in general, the variation in volume will be en-
tirely out of proportion to the flexure of the envelope and the
shortening of the corrugabions.

T can say this after long reflection on the subject and after
performing calculations which T shall not repeat here. There are a
few other disadvantages: for example, if the amount of gas inside
the aerostalt is small, then the direction of the longitudinal axis
will be highly unstable, because the pressure difference at the low-
point will be much less than zero, and on the longitudinal axis tilts
the aerostat will tend strongly to expand at one end and contract at
the other; this will not only drastically disturb the longitudinal
axis, but may produce irregular folds and the subsequent destruction
of the aerostat.

15%. When the chain is fastened to the diametrically opposite
point, the shape of the cross section will depend on the pressure
Jifference at the low-point, or on the relative volume of the gas in-
side the aerostat (F, G, H in Fig. 13).

The pressure at the low-point will vary from infinity to zero
and less, and the relative volume OT the cross—sectional area will
vary from 1 to 1/2. The higher the chain rises, the greater the
volume and the greater the pressure; the further the chain falls,
the smaller the volume and the lower the pressure. In the three
experiments depicted, the envelope was assumed to be imponderable,
i.e., loads were not attached to the thread, and the pressure at the
low-point, ascertained by simple calculation, was found to be b = D,
3/4 D, and 1/3 D, respectively-

As we shall see, for this cross section, when the envelope is
weighted, the pressure is lower.

154, This method of fastening the chains is preferable for
o variety of reasons:

1) the cross section is forced inward in the vertical direc-
tion, so that the height of the serostat is almost 1-1/2 times less
than when the chains are attached in the usual manner; this makes it
easier to seek protection from opposing air currents by descending
closer to the surface or sheltering behind woods;

2) the bulk of the chain is concealed inside the envelope,
and only a short length projects below the bottom of the aerostat;
this minimizes the drag;

3) the general gshape of the cross section, particularly at
the bottom, is close to a circle, and coincides quite accurately
with the cycloidal curve (Fig. 14) obtained by a circle rolling
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along a straight line, the curve being traced by a point rigidly
connected to the circle but lying outside 1t; the mathematical
identity is not complete, but the close similarity is strikingly
obvious, even when the cross section is considered imponderatle; the
similarity becomes éveén more pronounced where the ususgl fabric en-

longitudinal axis, as demonstrated by experiments based on the im-
mersion method > 1is always retained, provided the chains are not free
to slide through the bottom of the Cross section when the aerostat is
tilted, ang Provided the aerostat itself is not too elongated.

FPig. 14

155. The €quation of the cycloidal curve with respect to an
X-axls, coinciding (Fig. 14) with the trace of the center of g
circle rolling along a straightedge, and with respect to g y-axis
Perpendicular to the X-axis and passing through the point where that
axis intersects the curve itself, will be
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x = r arc sin (%% + R - J R? - y?),

s of the circle, and R is the distance of the

where r is the radiw
om the center of the circle

point tracing out the curve fr

s Section

3. Analytic Determination of the Shape of the Cros

asonably flexible (rea-

at the density of the
e the shape of

envelope is T¢€
t width and th
ttempt to determin

156. Assuming that the
sonably soft) and has a constan
material is constant, I shall now &
the cross section analytically.

Fig. 15

157. To begin with, we are obliged to make 2 simplifying
ngth of the aerostat is very great

assumption: namely, that the le
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relative to its width or height or, more accurately, that the envelope
is cylindrical in form while the shape of the normal Cross section
(Fig. 15) is unknown.

158. The tensile forces acting at the Circumference of the
envelope over unit width, will be designated ty and tz, the components

of force in the z-direction and in the y-direction (Fig. 15).
These forces are derived from the gas pressure and the weight
of the envelope. The weight of units of the length s of the envelope

159. Assuming that at the bottom of the envelope there is g
tube (appendix)* of length y5, full of gas and in communication with

ference of the gases at a point (z, v) is ay, vhere a is the differ-
ence between the densities of the air and the light gas. We may
write

air gas’

160. On the basis of the foregoing, we derive:

dty = - aydz - gds,

———————

*Actually, there need be no such tube in practice. My object is
solely to find a convenient means of expressing the pressure at the
low-point,
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2
161. ds = 1+(dy> . dz
dz
and
162. dt, = aydy.
163. And since
t
v _Y
- J
tz dz
then
d
o= X
y dz Z

164. On differentiating this equation, we obtaln

165. Eliminating dty, dtz, and tZ from this equation by means
of the preceding equations (160), (162), and (163), we find
dy &%y

- aydz - gds = a el ydy + éfﬁ - dz * a g ydy.
Z
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166. On evaluating the integral in this equation, and di-
viding by dz, we obtain

ds 2 a d2
o e (P G Pe)
Z

where Cl is a constant.

167. This equation can be made into a first-order equation
by putting

dy /
a; =7 E
whereupon
as = [1+y° . az
and

d22 dz dz dy dy dz dy

168. Using these formulas to substitute for the quantities
in equation (166), we obtain
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which is a first-order, but nonlinear equation.

169. From this we find

2 2
<—z—-y2+cl>y'dy'+[ay (l+y)+q 1y Jay=0

170. Here the varisbles are not separated, but simplification

2

is possible: putting 1 + y' = u2, we obtain y'dy' = u du; hence,

dividing by u, we get

(—;; . y2+C1>du+(ayu+ q) &y = O.

171%. Here the integrability condition is fulfilled, so that

2
j(%yEH_‘l du+I(aYu+q-jaydu) du:(-g.‘-.y +C]> u+qy=02.

Here 02 is a second constant.

172. From this last equation we find
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02 - qQy

u= ———
a
E-y2+cl

175. But this is not all, since, dropping the notation of
(167) and (170), we get

y e (e )

a .2
> y= + Cl
oY
- 2
dy _ 2 "W 1
dz
a
e

174. For the integration we find

(E? y2 + Cl:> - Ay

dz = .
/(CQ'W)Q'C%'Y2+01>2
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For each y formula (173) yields two derivatives; these are
equal but have different signs. Clearly then, the curve is symmetrical
about some axis parallel to the ordinate axis.

dy

1'75. Assuming Iz = 0 in equation (173) and applying this equa-

tion to the aerostat in question (Fig. 1), we find that ymin = y3 and

Ypax = y3 + h, where y5 is the height of the appendix and h is the

height of the envelope.

176. This enables us to find the constants Cl and C From

x
(173) we obtain the four pairs of equations needed to determine the
two constants:

- Co " Wn T 7 yxiin * Oy
G - Viax é% . yzax ) Cl

178. C2 B qymin - é; . yIiin B Cl’
Com W T T yriax+cl'

L79. Co " Woun = 7 % ' yfmin "
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180. c. - _2 .42 i
o " Ynin T 2 Yain 1’
a 2
C - = — + C
2 qymax 2 yﬁax 1

From the first palr of equations we obtain

a 2 q
181--C=—<y2 + ¥, - =y -y . )
1 L max mi 2 max min
_ a 2 _ 2 q
182 Cg B b <}max mi 2 (ymax * ymln)

These equations, as we shall see, apply to an ordinary
ponderable envelope, oOr, in general, whenever the light gas or fluid
inside the envelope tends, as it were, in a direction opposite to
that of gravity. ©Such is the case in relation to the aerostat.

From the second pair of equations we have

- _ 9 -
185, - Cl a <?iax + yii;> + 2 (ymax ymin)'

=|le
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These equations apply to negative ponderability or, in general,
whenever the apparent tendency of the fluid inside the envelope is to
move in the direction of gravity. This is the case when we determine
the shape of a cylindrical bag filled with a fluid or gas heavier
than the surrounding medium, for example, air.

It is not possible to determine the constants from the third
and fourth pairs of equations, but we then get

a  Ymex Ymin q h
1_8 . . = — - [s) - — o —
5+ Ypin T & 5 y OF Yz T g2
Y. -7
a max min q h
]—86. = == =-— = i or = e e - —,
Ymin a o ? yz a 2
. . dhy . X
187. Suppose that when the derivative (aﬁ) is equal to in-

finity, ¥y - ¥z = hl (Fig. 12); then from equation (173) we find:

hl + y5 = N/ —

Clearly then, Cl must be negative.

It is also apparent, on the bvasis of equations (181) and (183),
that hl will be smaller for positive than for negative ponderability

(Fig. 15).
Likewise, it is not difficult to show that in the case of an
infinitely large pressure P at the low-point of the envelope (y5 = @)

hl = %%, for both in positive and negative ponderability, which serves
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as a check on the formulas.

188.

By eliminating C1 from this last equation, we find:

in the case of positive ponderability (aerostat):

a (y - Vi)
max min
h, + L= /2 y2 y2 -
1 ymln // ( max * min) a ’

and in the case of negative ponderability

q (y -V i)
2 o) max min
h, + .= 1/2 + ¥ +
1 len J/ / (ymax min)

189. When the envelope is imponderable, i.e., g = 0, we have

2 2
h , = 1/2 .
1t ym1n V/¥; (ymax * ymin)

The greater the value of y5, the less h

compared to h; so
that when y3 =0 1
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d the radius of curva-

190. The usual formula enables us to fin
) and (172), we find

ture of the unknown curve. Using equations (170

y2+C

191. Now

C, -

%E V/l + <. j) = % 2 .
VA
. C
2

r\)|g:

192. From equations (166), we obtain

)
+1]

¥2 + Cy

) w
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195. Finally, from this and the preceding equations, we find
the radius of curvature p:

3
(:i) + (C, - @)®
p= d%y =

" q<§y2+cl>+ay(02-qy).

19k, We recall that g is the weight of unit length of the
envelope for unit width; a is the difference between the densities of
the internal and external fluids, equal to y -7 ; ay_ expresses
air gas 3
the pressure at the low-point of the envelope; ay is the pressure at
the level y; C1 and C2 are constants determined from equations (181)

and (182) in the case of ordinary positive ponderability, and from
equations (183) and (184) in the case of negative ponderability.

195. Consider the circular cross section of a cylindrical
aerostat of height h¥. fThe buoyancy of this circular cylinder will be

h®
L

weight of the envelope of the (open, of course) cylinder. We then
have

* a. Let L/n be the part of this buoyancy corresponding to the

—=— * a = Tmhq,

and hence

*The width of the cylinder is assumed to be equal to unity.
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ah

aqa = I

196. My object 1is to introduce & rough approximation of the
fact that the weight of the envelope corresponds to a certaln fraction
(1/n) of the puoyancy of the aerostat.

On eliminating 4 from the constants C1 and C2 and from equation

(193), and on eliminating the constants themselves from the last

equation and replacing the expressions ¥ and y . Y thelr numerical
max min

values (¥ ~h+y,endy . =7 ) (Fig- 15), we obtain for the
max 3 min 3

aerostat (positive ponderability)*:

2y 1 Y " ¥z2
h (e 2t =P
o= h on n - h
o oy, 2y% 2y 1 Y-V
g-(l) _L(1+fé+_§--}_)_l;.g-(l+_2__+____—é)
n b n h L2 @en h h ©2n nh

197. Iikewise, for a gas heavier than air, or for 2 bag con-
taining a liquid, say water, W€ find

h(l+ =+ =" """
(1+ h 2n nh )
p=/////2 :
2y, evy 2y y -y
2 v 1 3, 54t y - 3
- (= -—1+——+——+—+u-—1+——+-—-_-———
n (h) n ( h 1@ 2n) h ( h 2n nh )

*I.e., ordinary gravity.
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198. Clearly, from these equations, the curve has a very
complex form, and its shape will depend on the relative massiveness

1
(3;) of the envelope and on the relative pressure yé/h at the low-

point of the eénvelope, If these quantities are constants, then the
curves will all be similar, Of course, the shape of the curve will
also depend on the direction of gravity with Treéspect to the direction
of the gas bréssure, as will be obvious from the differences between
the last two €quations.

Y.
199. When ;? = ®, both equations state that the radius of

curvature is constant and equal to h/2 (half the envelope height),
i.e., the curve reduces to a circle.

200. According to the first equation, for an aerostat such
that n = 1, i.e., when the welght of the envelope is equal to the
buoyancy of the gas, the curve will also reduce to g circle for any
Pressure ¥3 at the low-point, since the first equation gives p =

= 1/2 h,

/ We arrive at the game conclusion when we find the derivatives,
etc. from the equation of a circle relative to its tangent, and sub-
stitute in equation (166). We find that this equation is satisfied;
therefore, when n = 1 and the ponderability is positive, the curve
will be a circle.

Let us now put n = 2 in equation (196) and give the ratio
v./h the values: 05 1/8;5 0.1k; 0.15; 1/5; 1/k; /2; 1, successively.
5 We then obtain the following formulas for computing the radii
of curvature of the curves bounding the crogs section of the asero-
stat. For the sake of brevity, in these formulas I have introduced

y - v
>

the abbreviateq notation = k, but since h, or the envelope

height, has been made equal to unity, we have ¥y - y3 = k.

For different values of k, we obtain different radii; these
are tabulated below:
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n o
k 0
o 1.500
Y3 1
201. -1:1- = g
k 0
o | 1.000
I3
202. = =10.1k; o,
h
k O
o 0.984
J
203. i? = 0.15; o =

G+ Ek)e_
6k + 6

0.2 0.5

0.714 | 0.471

(2 + k)2

P TR by e B

0.2

0.658

0.5
0. 480

(2.06 + %)°

i
N

1.0

0.357

n=2

1.0

0.375

0.2 0.5
0.657 | 0.484
(2.1 + x)°

Tk (b2 4 k) + B3L

1.0

0.378

e (4.2 + k) + b6

n

111
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1.0

0.378

k |oO 0.2 0.5

0.482

o | 0.955 | 0.650

There is nothing easier than to construct very accurate curves
from even these few radii; but let us proceed.

2
¥
o0k, _hé — _1_; 0= (25 + k) , n=2
2 b (4.6 + k) + 5.98
k|o 0.2 0.5 1.0
o | 0.885 | 0.636 | 0.485 | 0.38
J 1 (5 + 2k)2
005, 2 = T oe- . n-o
h 16k (5 + k) + 30
k|0 0.2 0.5 1.0
o | 0.833 | 0.617 | 0.486 | 0.389
Y 1 ox)°
206. 2 = —; 0= (7 + 2K) ; n=2
h 2

16k (7 + k) + 70
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k| O 0.2 0.5 1.0

p | 0.700 | 0.589 | 0.492 | 0.kLok

y
207. f:l; o= ‘—; n=2

k| O 0.4 1.0

p | 0.611 | 0.51k | 0.433

208. Using these data, we are able to construct the curves
arrived at earlier by experimental means (Fig. 16).

An inspection of these curves shows that they all resemble
elongated cycloids (Fig. 15). We also see that the pressure y5/h at

the low-point cannot be less than 0.237, for otherwise the curve would
not be closed, i.e., it would not cut the ordinate axis. Clearly,
moreover, the curve will round out more and more as the pressure at
the low-point rises, but the double (or full) width will nevertheless
appreclably exceed the height.

209. If we construct curves on the basis of formula (197),
we see that the bag containing some gas or fluid heavier than air will
have the same curves in its cross section, except that they will be
turned upside down. Note likewise that the curves are less elongated
in the horizontal direction than the curves of the aerostat, and re-
quire an incomparably greater pressure yé/h at the low-point.

210. The curves for a weightless envelope occupy a middle
position; their properties are intermediate, i.e., they are charac-
terized by intermediate elongation in the horizontal direction and
require an intermediate pressure at the low-point of the envelope.
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211. The dependence of the shape of the aerostat envelope on
the relative ponderability 1/h of the envelope, given the same pres-
sure at the low-point, is also readily seen. For example, if y}/h =
= 1/2, and n is successively 1, 2, and = (or if the ponderability 1/n
of the envelope is respectively 1; 1/2, or 0), we can construct three
curves on the basis of equation (196). The first curve will be a
circle and then, as 1/n decreases, the curve will become increasingly
elongated in the horizontal direction.

212. TFor the construction of weightless envelopes, we can now
derive some extremely simple formulas by putting n = in equations

(196) or (197).
We then obtain



If, on the other hand, we put g = O in equations (183) and
(184), we obtain

a 2 2
— = w— +
Cl L [ymax Ymin
a 2 2
C,= — -y
2 h [ymax min]
213. Accordingly:
h ymax + ymin
p=7 —
L ¥
or
_h h + 2y5
P y
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21k. Using equations (196) and (197), if n = @, we arrive at

exactly the same result:

2yz 2
. <l+—h§> _h h+2y5
= 5 - — + —
h%<1+—j;—3> b d
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215. Clearly, from the last formulas, as the ordinate y in-
creases the radius of curvature continuously decreases. When y = y_,
p will be a maximum; then 5

= (:2y3 * i)

When y = h + y_, we obtain the maximum curvature, namely:
3 J

The ratio

216. 1If, moreover, y5 = 0 (i.e., the pressure is zero at the

low-point), then the radius of curvature p will range from infinity

to h/k.

217. As y3 increases, or as the pressure at the low-point in-

creases, the radius p will decrease at the bottom and increase at the
top. When y3 is infinitely great, of course, the curve must become

a circle, and, in fact, we find from formula (213) that p = 1/2 h,
i.e., we obtain a constant radius equal to half the height h of the
envelope.
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1y adequate for very
tion of the aserostat and for the ex-
11 respects and details.
theoretical data for

518. TFormulas (196) and (197) are entire

accurate tracing of the cross SecC
imental investigation of the curves in a
Nevertheless, I ghall also present some

d;
<}E%{> is expressed by formula

rormula (174)-

per

the same purpose. The derivative

(173); for the determination of the curve we have

219. Below 1 offer the second derivative:
(c, - ay) |=v (C -qy)+q(-aiy2+0>]
asy 2 2 2 1

dz2 <% y2 . Cl>3

give the dgifferential of the arc ds:

ppp. Further, I shall

ds dz 2
s . [14(—)
ay dy

we have

or, using equation (173) 5

(Cg - aqy) &y

[er-wr -G irn)

ds =
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221, Finally, the differential of the cross-sectional area
is (y - ¥5) dz; consequently:

<§y2+01)(y-y3) dy

\/(Ce'qy)z'<3ay2"cl>2

(v - yz) az =

222. The equations of this chapter may also be applied, with
other constants, to a different method of suspending the gondola;
they may also be used to determine the shape of the cross section of
a variably inflated aerostat, when the bottom of the envelope forms
a re-entrant or salient angle.
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VII. THE CORRUGATED METAL SKIN OF THE AEROSTAT,

STRETCHING AND BENDING OF THE SURFA.CEl

Surface of Revolution Transformad into a Double Plane

In addition to the one described in Chapter V, there is yet an-
other type of corrugated aerostat envelope, Accordingly, I shall
proceed to derive certain formulas relating to the corrugated surface
of an aerostat needed for constructing this surface in accordance with

some specific system.

225, First let us suppose that the aerostat has the shape of
the surface obtained by rotating some smooth curve about its chord

(Fig. 17).

1A portion of this chapter is taken from my book Aerostat metal-
licheskiy, upravliyaemyy [The Maneuverable Metal Aerostat ] (1892,
1893).
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We can now transform this surface in such a manner as to obtain
the desired properties (Chapter V).

To do this, we divide the surface into a large number of parts
by means of planes perpendicular to its longitudinal axis (Fig. 18).
Fach part may be regarded, with no great error, as the lateral sur-
face of & truncated cone; the ends of the aerostat however, re-
present the lateral surfaces of complete cones.

Fig. 18.

ooly, Conical surfaces have the property that they can be
folded flat without wrinkling. We now flatten all the cones in the
gsame order in which they were originally arranged and attempt to lay
them out so that there are no gaps between neighboring cones yet no
cone overlaps its neighbor. This we can never achieve (Fig. 19).
Along the center-line of the drawing, the folded conical surfaces
do not meet; the closer we get to the edges of the figure and further
they move apart; these surfaces, of course, are understood to be
double surfaces.

Hed the edges of the gaps in the last drawing been parallel,
it would have been possible to bring the surfaces closer together
and make them continuous.

025, Now suppose that the strips (Fig. 19) are extremely
narrow and that the gaps between the strips are likewise narrowv,
We now bend each strip to form a trough or ridge. The troughs
should be deeper, and the ridges higher, along the longitudinal axis
of the drawing, growing shallower or lower as we proceed further
out from the center-line. Then the middle portions of the strips
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will undergo & transverse contraction, and the edges of the gaps will
be equidistent. Thus, we shall be in & position to make those edges
meet., The end cones (Fig. 19) remain unchanged .

<

Fig. 19.

006, Thus, the perostat is first cut up into narrow strips,
these strips are folded flat and given a trough-like shape, and,
finally, the edges are brought together, i,e., those points on the

gurface of the serostat which were previously in contact are re-
matched.

As & result, we have an aerostat (Fig. 20) which is cleverly
and continuously folded flat and covered with transverse corruga-
tions. These corrugations are the deeper the closer they are to the
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center-line of the folded metal bag; only the edges of the latter
and the hollow end cones are perfectly flat. When the bag is in-
flated, these corrugations are more or less smoothed out, i.e., the
depth of the corrugations is reduced, But it will not be possible
to inflate the aerostat completely or to smooth out the corrugations
completely without breaking the skin. The waves in the surface must
therefore be steeper, 80 that they will not be completely smoothed
out when the envelope is fully inflated; in the first Place the
extra fullness of the waves is no disadvantage; secondly, it enables
the surface freely to take on the shape ¢orresponding to the cross
section depicted in Fig 1 and %o vary that shape appreciably,

Fig. 21,

To these properties we may add another, viz, g special elasticity,
S0 that the aerostat "springs back," despite considerable changes

228. Even though the above concept of the design of g folding
metal aerostat is highly useful for clarifying its capacity to change
shape in réesponse to the forces acting on it, in practice the aero-
stat will probably have to be made of banels, so I shall now suggest
an alternative method of plane construction,

Suppose we take two adjacent folded conical surfaces and
divide them into panels in the manner shown in Fig. 21. If we pass
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each such panel through a pair of toothed rollers, i.e., through &
pair of cylinders covered with corrugations the crests of which are
aligned parallel to the axes of the cylinders, then the length of
the panels will be reduced [Fig. 22]%.

By employing rollers with corrugations of different depths
and also by moving the rollers slightly apart, we can shorten the
panels by different amounts without varying the number of corruga-
tions impressed on all panels of the same size.

229, The panels can also be reduced in size in such a way
that the edges of the gaps between them are parallel when the panels
are rearranged in their former positions (Fig. »1); this, of
course, requires that the panels be given corrugations that are
parallel to the strip,and the steeper the closer they come to the

*Square brackets are always reserved for additions made by the
editor
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center-line of the folded aerostat. ,

It then remains to bring together and rejoin all those points
on the amerostat that were originally in contact.

The shape, of course, will be exactly the same (Fig. 20) as
that described in connection with the other method of forming a
folded metal bag,

230. Not all the rings (or strips) need be corrugated; it
would be sufficient to corrugate alternate rings.

Geometrical Calculations

Now let us proceed to the calculations. I shall first work
through the purely geometrical calculations, later the meehanical
calculations as well. To start with, we need to know the radii and
angles of the cones forming the gas envelope, as well as the gaps
between adjacent strips (Fig. 19); once these gaps are known, it is
not difficult to determine the extent to which they must be reduced
in order for the strips to fit side by side in a single plane, thus
forming a closed envelope.

Fig, 23,
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Fig. 24.

231, Suppose that the equation of the curve (Fig. 17)
generating the surface of the aerostat upon rotation about its chord
is y = F(x); here we take the chord as the ¢ axis, and its center
as the origin of the rectangular coordinates. Then, from Fig. 23,
where one of the truncated cones is shown in its natural i.e., unfolded
form, and where I is the tangent to the curve, or the generatrix of
the complete cone, h 1is the helght of the cone, and ¥ is the
radius of its base, W€ find

dy _ ¥ _ 2,

032, SL=f and T =h 4V
hence

5 L

2

233. r=y[1+(§—§> ] .
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We have determined the generatrix r of the complete cone,
or the radius of the folded truncated cone, which looks like part
of a ring (Fig. 24). From the drawing, we now find the length of
the arc MIL:

o3, ML = 2 _
L

R =

Consequently, writing 360O as 27, we have the following ex-
pression for the angle @ subtended by the arc ML:
1

235, @ =

On the basis of this last equation and equation (235), we
arrive at

2 -
236. i=g[l+@%>] :

f\)"——'

We now have to find the size of the edge gap (i.e., at its
videst point for a given pair of folded strips) between two cones
folded flat (Fig. 24), which we denote as A .

1

Having examined Fig. 24, where r 1is the outside radius
of one strip, (r + dr) the outside radius of the adjacent strip
and ds the width of the strip,
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2 l
2
237. ds = [1 + 9%?) ] dx,

we can formulate the following equation:

238, (r+dr)=00 cos(® -4 ) + r cos(d™ ) + A + ds =
1 1 1 1 1

=00 cos @ +1r+ A +ds.
1 1 1

259. But

00 =(r+dr)-r -ds =dr - ds.
1

240, Therefore:

A =<c;_r_d_s>_ (1 - cos @ Xx.
1

x 4x 1

Here the angle @ is found from formula (236); but the angle
1
may be less than @ , and we then find not the widest gap A at the
1 1
edge of the folded strip, but other lesser values A lying closer to
the center C (Fig. 24); thus, formula (240) holds true in general;
we therefore have
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2k, A = @l-ﬁ) (1 - cos o) dx;

X dx

here the angle « is not entirely arbitrary, but must satisfy the
condition

1
)
2ha. asT_T[1+ —X->_] ,
2 o

i.e., 1t must be less than ¢ * (236).
1

ol3, Once A and A are known, it is readily seen that the
1
shortening of an individual panel dA forming an element of the
strip (Jjust as the latter in its turn forms an element of the
serostat) is: dA = A - A, i.e., it is equal to the greatest gap
1

between the given peir of strips minus the gap corresponding to the
position of the glven panel.

shl, TIf the equation of the generatrix (Fig. 17) of the gas
envelope is known, then, however complicated its shape may be, we are
in a position to find out, from the above equations, the radii r
of the strips (233), their length (o3L4), their angles (236), the
gaps A and A (241) and (240), and the shortening dA of the panels that
1
form second-order elements of the aerostat.

o5, We see from equation (241) that, for a particular strip,
or for a constant value of the coordinate x, the gap A is pro-

*Not greater than @ .
1
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oA

portional to 1 - ¢cOS o, but we have approximately 1 -cos @ =",

2
i.e., the gap is proportional to the square of the angle & or to the
distance from the center point L along the arc MN (Fig. 24), regard-
less of the shape of the generatrix or the form of its equation (251).

ol§., The equations we derived, which contain the radius T
(233) and the arc s, are quite complicated., But for our initial
purposes they can be simplified. The corrugations of the envelope
surface do not require to be calculated with special accuracy, since
they are made with a safe margin of tensile strength; thus the
simplified expressions will also be suitable for designing the
envelope.

We have approximately [Fig. 23 and formula (233)], provided the
aerostat is fairly elongated:

oL, r=h=y " 33

oL8,

p1m

3 )
U

=

From (247), on differentiating, we find

2 2
2L9. ar . _ Cdx) ay .
-t N\&y s &?c%

Hence,

5 .2
250. dr ds dx> dy
—_ T — =Y —_— — .
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Moreover, from (236) and (245) we get, approximately:

™ ay
251. ¥ = E’ * - 2
1 dx
2 2
252, 1l - cos @ =£ =T—T—<Q> .
1 2 8 "adx
Now, from (240) we find
-n2 d2y
253. A=—-y-—2'dx.
1 8 dx

x° )
254k, If, for instance, y = F(x) =y 1 - — ./, i.e., if
1 X
1
the aerostat is formed by rotating the arc of a parabola about a
chord 2x perpendicular to the axis of the parabola, then we obtain

iy

1
the following approxim ation for the edge gap A :
1
22 2 2 2
L y1 X iT Z.'L y
IRRECT ) R
1 hx X X2 v
1 1 1 1

Here, as In the preceding equation, 2x is the length of the
1
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envelope, and 2y is the height of the envelope, or its greatest
1
diameter.

255. The formula clearly shows that A 1is proportional to 2y,
1

i.e., to the diameter of the cross section of the envelope and to the

width dx or ds of the strip for a given gerostat. Near the ends

of the envelope, the gap between the strips will be so small that at

the ends of the envelope the corrugations can be safely neglected and

these areas can be made smooth and conical.

p56. It is clear from the same formula that for constant
x/x and dx but envelopes with different aspect ratios X /y the
1 1 1
quantity A will be inversely proportional to the square of the aspect
1
ratio. For example, if the aspect ratio of the envelope were tripled,
while retaining the same equation of the curve, then the gaps be-
tween strips A would be reduced 9 times.
1

o57. The last formula also gives us the greatest relative

shortening A /dx of the panel (Fig. 21, 24). Putting the envelope

1
aspect ratio X /y equal to T in this formula, and assigning to

1 1
x/x successive values of O, 1/2, 3/&, and 1, for the relative
1

shortening A /dx our calculations give: 1/20, 1/26, 1/46, 1/85, and O.

1

258, When the envelope has the ghape of an ellipsoid of
revolution, then

—

/
X
y=Fx)=v «/1‘—2'
1 X

1

and
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2 A

2

A 8 * 2 2 2

_l_: 2 =—-—ly—l -Zl_-
X

dx (__) 8 X2 y2
2 1
1

This makes it clear that in the case of an ellipsoid, the value
of Al/ﬁx for the edge gap, or the greatest shortening of the panel,
will increase rapidly toward the ends of the envelope, Again as-
suming x /y = T, and X equal successively to: 0, L/S, 5, 5/5,

1 1 1
4/5, we find the corrdsponding values for A /dx: l/ho, l/58, L/Bh,

1
1/26, and 1/1k.

259. If we assume

2
n
y=F(X)=yl<1-§> ,

where the exponent i/h is the arithmetic mean of the exponents
[degrees] of the equations of the two preceding curves, we find:

2

o o X

A 2 2
N bl
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Again putting x /y = T and x/x equal successively to:
11 1
0, 1/5, 2/5, 3/5, 4/5, we find for A /ax the values: 1/26, 1/26,
1
1/25.5, and l/22, respectively.
Consequently, we can also get envelopes shaped so that the
edge gap is approximately the same from the nose to the tail of the

aerostat.

260. TFor an elongeted cosinusoid
i
y=Fx)=y cos<2—X—>
X
1 1
and
BT (D L
— o= —) =) cod — ) — " 5 °
dx 32 Xl X 2x1 32 Xl

This means that the edge gap will be reduced at an extremely
rapid pace toward the ends of the envelope and, in fact, will be
proportional to the square of the diameter 2y of the envelope cross
section. This gives a very smooth, sharply tapered, and well stream-

1
lined shape .

n61, This last formula may be written as:

1
T have designed high-speed boats with just this shape.
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Al .nl# ¥1 e Yy g
ix ~ 32 g) C ;{) .

Hence it is clear as we also found in the case of other sur-
faces, that the value of A 1is inversely proportional to the square
1
of the envelope aspect ratio.
The greatest edge gap is obtained from this last equation by
Ay ™ Y2 al
substituting y = yq- We thus find — = —< —> . When — =7,
dx 32 X1 ¥y

A
we have — = 0.06212, or about 1/16.3*.
dx

Actuelly, in the middle of the envelope, the gap will be far
greater, compared to the other shapes, but in contrast it will be
reduced rapidly toward the ends of the envelope.

A
262, We can also make . F(y), i.e., make the relative
dx
shortening of the center panel or the edge gap chosen functions of

the coordinate y.
We then obtain the differential equation (cf. (253))

o} 2
i dy
—_——.y " = F
8 dx )

or

¥1/16.1, to be more precise.
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Hence

dy

S TR

where C is a constant.

063, If, for example, F(y) = ky, where k 18 sOm€ constant

multiplier, then

and
- 2
S dy - T /C 16
X = - —=ky +C_>»
2
ch - lé ky 8k m 1
e
where C 1is also & constant.

1
This is,
earlier.

of course, the equation of a parabola, as we have seen
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Mechanical Calculations

26k, ILet us now consider the mechanical aspects of the
problem of designing the metal envelope of an aerostat,

We have learned that each panel must be shortened by a certain
amount (A - A), and that this can be done by corrugating the sur-

1
face in the machine illustrated in Fig. 22, Then, when arranged in
the proper order, correctly aligned and welded together, the panels
will form a flat bag which, on being inflated, will assume a stream-
lined shape (like that of g fish or a spindle) with no irregular or
unexpected wrinkles likely to impair its integrity.

But the panels could be shortened by means of either shallow
or deep folds or corrugations (Fig. 25). The question is what size
should these corrugations be?

It is imperative that the corrugations, the crests of which
define the cross section of the aerostat, be free to bend as the
aerostat passes from the flat to the round inflated form, with no
danger of fracturing or cracking or the formation of irregular
folds,

This condition calls for the shallowest possible corrugations;
but very shallow corrugations would not be of much use for the
simple reason that, as the aerostat is inflated and the corrugations
flatten out (i.e., as their depth is reduced), they must not only not
crack, but must be elastic enough to spring back into their original
form when the aerostat is deflated,

This second condition calls not only for highly elastic
material but also for the deepest possible ecorrugations,

265. Thus, we can now proceed to determine the maximum
dimensions of the corrugations, for the time being solely from the
standpoint of safe transverse bending of the aerostat surface,

In order that the bending of the corrugated peripheral sur-
face of the cross section of the aerostat may be viewed as that of
a8 massive plate of thickness 2h, smaller second-order corrugations
will have to be formed in the ordinary [or first-order] corrugations
whenever the size of these corrugations is much greater than the
thickness of the sheet meta] of which the panel is made, and smalle
or third-order corrugations may have to be formed in these second-
order corrugations, and so on. It is my belief that in practice
we need not go beyond the use of ordinary first-order corrugations
in normal aerostat design, or in the worst case Ssecond -order corruga-
tions (Fig. 26). This task can be handled with machines similar to
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Fig. 25. Fig. 26.

the one i1lustrated in Fig. 22, Suppose that a massive surface of
thickness 2h is bent jnto a circle of length C; then the convex
side of the resulting cylinder will be stretched by an amount ac,
while the concave gide will be shortened by the same amount; clearly,
the ratio dC/C must not exceed the ratio K /E where K 1is the
e e

elastic limit of the material (i.e., the stress st which the material
fails to resume its original shape when the applied forces are re-
moved and tends tO rupture) and E 18 the modulus of elasticity, S0
that the ratio K /E expresses the 1imiting elongation per unit length

e
of material. We have

267. T =

where

268. C = 21y;
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accordingly, on differentiating we have:

269. ac = om3y

and therefore, dividing (269) by (268), we get

270. ¢ dy _ Ko |

271, h<y-

Of course, y and h consequently h are variables even for the

same aerostat and proportional to the diameter of the cross section.
The depth of the corrugations

272, h=y-*—

is perfectly safe, since the true depth diminishes steadily as the
walls of the aerostat stretch and the folds in the envelope straighten
out, hence the danger of rupture likewise steadily decreases; then

the true depth of the corrugations is not constant but decreases as
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the distance from the center-line (Fig. 20) of the metal envelope in-
creases.

2753. We have determined the maximum depth h from the stand-
point of the cross-sectional dimensions of the aerostat; we shall now
determine this depth from the standpoint of the elastic longitudinal
stretching of the corrugated surface of the aerostat; to be precise,
we shall seek to determine the least depth h that the corrugations
can have and still be able to stretch by a certain fraction A/dx of
their length, when formed in sheet metal of thickness 5, and then to
return to the earlier value y as the effect of the tensile force
decreases. B

Let Fig. 27 represent part of a corrugation between the center-
line and the crest. Assuming, for convenience, that the corrugations
are arranged horizontally, we designate by 2z the variable depth of
the corrugation from the high point to the low point; the correspond-
ing constant depth (when the corrugated surface is no longer subject
to tensile forces) may be designated 2h; finally, the wavelength
from the high point to the adjacent low point may be designated 2L.
Clearly, from Fig. 27, the depth of the corrugation comprises only
8 small fraction of the wavelengthl, so that, in spite of any second-

order waves -- provided only that these are similar in shape to the
principal waves -- we have, approximately:
zZ
27k, V=H"—.
L

which expresses the relationship between the longitudinal force H
and the normal force V that act to bend the plate into the position
depicted in Fig. 27.

Iet us consider the effect of the normal force. Figure 28
shows a plate of thickness © and unit width.

1
Usually the wavelength is understood to be twice this length or
41,
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275, A fairly simple integration yields the formula €ED for

3
the action of the force on the lever arm &/2 (Fig. 28) for a relative
elongation €  of the surface portions of the bent plate™. This
force (275) is balanced by another force V acting on a lever arm of

‘ | !
LNT /’/S l == R g i
PRI , S
ly— Ly— 0 W
R s i S A

Fig. 27.

length x; consequently, in accordance with the laws of statics, we
have

€E5) , B
o76. Vx = '3_> -,
2
or
eEs”
277*0 V = 6X

1
€ is the elongation per unit length of the surface layer, Or

O [ef. (265)].
B
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We have, approximately

1O

edx = e dd;

n

lar rotation of the plate

whence the differential of angu

278.

The differential of the deflection i of the end of the

plate is

279.
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Or, in accordance with (277) and eliminating e;

12Vx°
280, at =

" dx,
5OF

On integrating this expression, we have

3
4
581. 0o A

Putting x = I, ang given
z
V=H" -, we obtain
L

; in accordance with (247), that

4HZL2
282, 1= .

63E

This equation shows the deflection of
to the point 3z asg & function of the longit
In equation (277) 1et us put x = I and

the end of the plate
udinal tensile force,

K
283, € = < ;
3 7

whereupon we obtain
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284, V = -

Ké * 52
285. H=z—— ,
6z
or

2
Ke5

286 . 7 = .
6H

Since the greatest depth of the corrugation is h,

26(. ' =h -z (Fig. 27); accordingly, by means of equation
(282), we obtain

588 E 63 <F - %)

T L2

From this equation and from equation (285), eliminating H,
we have

289, h -z ) ) i ' E _ 21K
L ) <:1 h> L

38E
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clearly, the first and second parts of this expression are identical.

h - 2 _r the plate as & function of

It gives the relative deflection

its dimensions and the properties of the material of which it is
made.

290, From the ratios w/L and z/h we can also find, by purely
geometrical means, the longitudinal elongation of the corrugations.
A normal cross section through the plate or corrugation has the
form (Fig. 27) of a curve which, in view of its gentle slope, may be
regarded as the inclined straight line S, 8O that, according to
Fig. 27, we have approximately

5 2 2 2 2 2
291. s =1L +z amd S =L +h ,
0
and hence
e — 2"
- +<3 > - )
= =4 an = 1+L »
L Ly 0
but since the ratios z/L and h/L constitute a small fraction of
0]
unity,
2
293, s 2° s h
— =1+ —_@&and —=1+ "5
L 212 L 17
0 0

subtracting one from both sides, we obtain
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29k, s -1L Z S - ho h

L :
and since igcw 1, we may write

2 2
s -L A s - L h
= ——and __-—-—-O- = e—
L 12 L 12
0 o 0 0

We have determined the relative elongation of the corrugated
surface independently of its elasticity, when it passes from the
corrugated form with deflection Z to the perfectly rilattened state,
something which cannot occur in sctual practice, for that would re-
quire an infinite longitudinal force which would have the effect of
destroying the surface rather than stretching it. 5

The elongation corresponding to & deflection n is h2/2LO;

consequently, the elongation corresponding €O & deflection from h
to z will be:

2 2
295. L - L h -2
= 2] H
L 2L
0 0

or, dividing the numerator and denominator on the righthand side by

2
h
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52

296. L - LO 1< > )
= __ 1 - —_— .
2
IU 2 h

oo |

Note that the true elongation is slightly greater than that
given by the formulsa.

Minimum Dimensions of Envelope. Application to Various Shapes

297. Now we have all the data needed to find the minimum 4i-
mensions of the metal envelope from the point of view of itg struc-
tural integrity and the elastic stretching of its corrugated surface
on passing from the folded to the inflated form,

For any aerostat, as we have seen, the relative €longation of
the panels is expressed approximately by the formula (253):

o 2
Al - d~y
—_— — . v . -
dx 8 ax®

This is the maximum elongation along the center-line of the
gas envelope (Fig. 20); if this elongation is elastic, then the
elongation of the other banels forming part of the same strip above
and below the center-line (Fig. 20) will certainly be elastic;
actually, the number of corrugations in each panel of a given strip
is constant, so that the wavelength is constant for each strip; the
depth of the corrugation gradually diminishes, tending to zero at
the ends of the strip., Naturally, then, if the stretching of the
steep corrugations at the center-line is elastic, that of the
gentler corrugations will be even more so. It is for this reason
that I use only the steepest corrugation at the center-line in my
calculations,



147

The stretching (Fig. 21) is inevitable in view of the geometri-
cal properties of the folding surface. But, on the other hand, the
elongation of the corrugated surface as a function of the slope L
of the corrugations and the bending z/h is determined by equation

(296). Therefore, eliminating A /ax or, which amounts to the same

-1
. L -
thing, Lo , from equations (253) and (296), we find
L

298%, e d2X 72 h '
LA =<l———'> « =

2

i dx” n® L

Now from this equation and (289), on eliminating h/L, we get

4
: G-
299. 2 -9 5 a~y s h
L =—T y " - . > ¢ z ™ .
16 ax k (1 +}T)
e

Hence, using (289) and eliminating I, we find

2
dy BE
300. h==2.n2 -+ 2-< - .
1+ _:> K
8 dx h -

Here we find the depth h of the corrugation as a function of
the geometrical properties of the general shape of the aerostat, the
form of the corrugated surface and its elasticity; however, we have
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taken into acecount the transverse berding of the corrugated surface,
when the gas envelope is inflated. For this we have formula (271),
which we now transform thus:

301.
nE

where n is a safety factor indicating how many times the depth of
the corrugations should, for safety's sake, be assumed less than the
critical depth defined by formula (271).

From the last two equations, on eliminating h, we have

dey
2 .

- n

302. 1=——3-.n2. >
dx K (:

e

SE
1+

E)

303, For example, for a parabolic aerostat we find

on eliminating the second-order derivative from equation

Accordingly,
(302), we have

o) 2 nbE2
vt (Y
e *h
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304k. Clearly then, the radius y of the greatest cross
1
section through the envelope is directly proportional to the thick-
ness d or strength* of the envelope (with respect to failure of the
corrugated surface), and inversely proportional to the square of the

2,2
limiting elastic strain Ké/E .

This radius y is also inversely proportional to the square
o 2 1
xi/y of the aspect ratio of the envelope and the quantity 1 + z/h.
1
305. Clearly, the height 2y of the envelope may be arbitrarily
1

small if the aspect ratio is sufficiently large; the thickness of
the envelope and the other variables included in the formula may be
either arbitrarily large or arbitrarily small.

306, The dimension 2y of the envelope may also be as small
1
as desired even with a small aspect ratio x /y , provided the envelope
1 1

thickness is sufficiently small.

307, The limiting elastic strain K /E depends on the material
e
selected for the envelope.
Thus (according to Bach), for wrought iron or cast iron we may
assume that on the average K /E = 1000.
e
For untempered drawn iron (e.g., for wire) K /E = 1/500; for
e
tempered drawn iron K /E = l/lOOO, i.e., the same as for wrought
e
iron; for the best-quality tempered steel K /E = L/ESO; for rolled
e
copper or bronze sheet, on the average K /E a:l/BOOO.
S

*More accurately, the elastic safety factor.
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But there exists & grade of forged bronze for which

208, In equation (303), we may put

so that y = 4, i.e., the vertical diasmeter of the elastic folding
1
metal envelope will be less than 8 meters. But if we were to use
material twice as thick, the height of the envelope would be twice
as great, i.e., 16 meters. Now if all the data of (308) were left
the same, but the height 2y of the envelope increased, say by 3 times,
1
then n would be increased by the same number of times.

309. We find the depth h of the corrugations from the
equation (271):

Hence, given the data of (308), we find h = 8 mm, i.e., 2h =
= 16 mm.

From this equation and (289), eliminating h, we find the
wavelength I.:
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L = J 2. X;(? - §-> 5 3
2 n h

meters, we find
3, At other cross
i1l be smaller.

%10, For the data of (308) and ¥
L = 25.9 mm, or 2L ~ k8 mu; the ratio I/
sections through the same envelope L and h W

=k

311, We must bear 1in mind that the depth h computed from
these formulas ig perfectly safe; actually, &s the walls of the
envelope stretch and the corrugations straighten out, their true
depth, like the danger of rupture or wrinkling, will steadily de-
crease., Moreover, the true depth decreases the greater the distance
from the center-1line, a8 the longitudinal girders are approached

(Fig. 1)-

312, If we took thicker and less elastic material for our
envelope, for instance, soft annealed iron 2/7 mm thick, the dimen-
sions of the elastic bag would be far greater; thus, for a para-
bolic aerostat, ¥y = 32 meters or 2y = €4 meters, in accordance

1

with formula (303).

31%. But this doces not imply that it is impossible to con-
struct small aerostats using material of 1o¥ clasticity (K /E=1/1000).
e

In fact, as the aerostat is inflated the corrugations may at
rirst stretch inelastically. But for volume changes once the en-
velope is full of gas, even moderate elasticity will be entirely
sufficient.

21k, In this case We make use of equation (298), from which
we find geometrically, independently of the elasticity of the material:

-
r—————' -

h m J -d2y y

—_ - . .
L 2 da2 1 -
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515, Thus, for a parabolic envelope we have

B__ .0 y
HD %1 22
23’11'“2
h

316. Here, h may ve determined empirically or by means of
formula (271):

Of course, h will be different for each cross section. Sup-
pose, for example, that we are constructing an envelope with g
height, in the inflated state, of 25 meters; further, let us suppose
K
e 1 : 1 :
that n = 1, — = —_ (nilg steel), y. = 12 ; we then arrive at
*E 7~ Toos ¢ ! /=i

h = 121/2 mm.

Now, for the central Cross section let us substitute in

formula (315): y = y | 7 2, 22 Lo e then fing L - 3.341.
1% 77 hn 3 h

Thus, the wavelength will be 3 and 1/3 times the depth h. In the

same way we compute the greatest depth of the corrugations at other

normal cross sections through the envelope.

317. 1In view orf the fact that, in practice, the simplest
possible form must be given to the corrugations, without super-
imposing second-order waves, formula (271) will not always prove
useable; the best brocedure is to find by experiment the safe maxi-
mum radius of curvature for Specific corrugated surfaces made of dif-
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ferent materials and with corrugations of different size and shape.

%18, So far I have applied my general rormulas (302) solely

to a parabolic aerostat.
For an elliptical envelope

y = Yl
and hence
b
¢y _ L
dx2 x?Ly5

Accordingly, by eliminating the derivative from equation (302),

we obtain

319. yl=.g-ﬁ<_£;>2<%_>3.n-8-}32

Z
<} + Té) Ke

Clearly, the radius of the central cross section yl depends
on y, i.€«, the size of the envelope of an elliptbical serostat is
inversely proportional to y5, or to the cube of the radius of the

smallest cross section of the envelope, at the point where the cor-
rugations end and the smooth conical surface begins.



154

y
320. Thus, given the conditions of (308) and assuming . 3,
y
Y
we arrive at ¥y, = 54 meters; while if ;% =2, yl = 16 meters.

These dimensions are extremely large. Therefore an elliptical
aerostat can not be considered practicable.

In a parabolic aerostat, the folds and corrugations decrease
in proportion to the decrease in the radius of the cross section;
therefore, if the corrugations bend without difficulty in the middle,
they will bend even more readily at the narrow ends of the corrugated
surface. In an elliptical aerostat, on the other hand, the gaps or
corrugations increase rapidly toward the edges, so that safe bending
at the middle of the eénvelope does not insure safe bending at the
narrow ends, but quite the contrary. As a consequence, the calcu-
lations (319) are made for the end rather than the middle cross sec-
tion.

321. For a surface of revolution, the central longitudinal
section of which is expressed by the formula

2 3/k
= 1 - =
yEYy <j 2 ’
1
2
5 ;2 2 - §§
fll_gx_l T
dx? 1 2
y [1-=
2
1

Accordingly, eliminating the second derivative from equation
(302), we obtain

2 - 2 (2P ().

2 -

Hiolo

nZSE2

/i— Q.CL*%>&;

}}:_%
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Clearly, from the formula, the radius yl of the central cross
section increases as the radius y of the smooth conical surfaces at
the ends of the aerostat decreases. But this increase 1is not so
rapid as in the case of an elliptical aerostat.

303, Assuming the conditions of (308) and assuming further

that és = 3/4, we find from equations (321) and (322)
1

y
3% = 1.86 and y, = 6.08 m.

This aerostat would not be very large, even if the smooth

cones were smaller.
Zol,, For an elongated cosinusoid (260):

y=3 cos(ﬂ'x>and(f1—:f- z
L 2x1 dx2 b x%
Consequently, from (302) we have:

2

5_1» VN2 .5 - E
= y1=_3—21.<;1f> 3%<j+—z—>1<
h e

Clearly, the dimension y, is proportional to y. The calcula-
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tions must be done putting y = yl. We then obtain

LS AN .8 . B2
326. y, =2 ”‘(“l>'n - :
' % e (ﬁ + f% . Kg

Compared with a parabolic aerostat under identical conditions,
me
the dimension Yy for this balloon will be (ﬁ;{) » or 1.2337, times

greater, i.e., y will be 4.93 meters, or about 5 meters.

We should not forget formulas (271) and (310) in connection
with the wavelength and depth of the corrugations. Thus, we can de-
rive the slope h/L from these two equations:

K
h e 2
27. _= -
327 T T

y
Z
nd {1 + —{)
2 h

328. The last equation shows that the slope h/L of the corru-
gations increases as /¥ as the cross section or the distance to the

ends of the elongated envelope decreases.

329. If the thickness & diminishes toward the ends of the
envelope in proportion to the decrease in the dimension y of the
Ccross section, so that the ratio y/& remains constant, then, as will
be clear from the last formula, the slope along any given line run-
ning from end tc end of the envelope will likewise remain constant.
Both the depth and the wavelength of the corrugations will fall off
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toward the ends of the envelope (271).

330. If we disregard the properties of the material and center
our attention on the geometrical conditions, we must not forget
formula (31L4) in determining the slope. Thus, for a parabolic aero-
stat we have formula (315), but for an elliptical aerostat, on the
basis of (314) and (315) we compute

LS
331. o H
, o >
2 [1-%
yXq >

from which it is clear that the slope h/LO for an elliptical gas
envelope will be inversely proportional to the dimension y of the
cross section, whereas in the case of a parabolic envelope it is
directly proportional to vr;-(cf. formula (315)).

Clearly then, as we also see from the general formula (314),
the law of the slope h/LO depends on the shape of the elongated en-

velope, if the stretching of the corrugated surface is only partially
elastic. Otherwise, the curvature h/L will be independent of the
shape, and will depend solely on the dimension y of the cross section
[cf. equation (327)]. -

Stretching of the Corrugated Surface in General

332. In general, the formulas in this chapter will also prove
useful for determining the elastic elongation of the corrugated
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surface and the force producing that elongation.
Thus, from formula (289), denoting the slope h/L of the corru-
gations as k, we obtain

333. —=1-

Now, from (296), by eliminating z/h, we find

L -L 2LK
[}

33L, 0_ _=&. (: - _Eg_
Iy 3 B 35E

335. Clearly, the elastic elongation of the corrugated plane
in general, irrespective of the type of aerostat, will increase with
increase in the slope h/L of the corrugations.

This formula may be rewritten:

21K

L - L 2 o
LN G- 2T

It is now obvious that the relative elastic and the maximum
elongation 1s inversely proportional to the thickness ® of the sur-
face, and directly proportional to the wavelength L and to the
limiting strain Ke/E of the material. When the ratio L/® of wave-

length to thickness remains constant, the relative elongation remains
constant.
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K
- 20 mm, & = /7 m, — = /500,
L= I E

L

336. For example, when L

k = 1/3, we find from (334) that

_ 0.LW8, i.e., about 1/22.

3%7. We must also find the tensile force H acting on the
corrugated surface; equation (288) will serve this purpose. On
eliminating the ratio h/z from that equation by means of formula

(333), we get

SOl

Hmax - '
B L
Kek <6'_> - ——

&

Clearly, the tensile force will be proportional to the modulus
of elasticity E and the thickness of the material. But it will be

E
inversely proportional to the ratio — and the slope of the corruga-

tions. The formula gives the maximun tensile force when the elastic
limit Ke is reached.

338, Suppose that, for instance, ® = 1/7 m = 1/70 cm, L =

_ 20 mm = 2 cm, é? _ 500, k= 1/3, E=2" 100 xg/cn® .
e
Then, in accordance with the last formula, we find as the
limiting elastic tensile force on a corrugated surface 1 cm wide:
H = 0.4 ke.

3%9. We are also in a position to demonstrate the relation-
ship between the tensile force H and the corresponding relative
elongation € of the corrugated surface. We find from (296), writing

L-1L
0 for the sake of brevity:

er instead of
0
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L

«/1-2@?‘)2' er.

Now, eliminating h/z from (288), we find

58

e Ay

H =

This shows only that an increase in the elongation eF means a

proportionate increase in the force H required to produce this
elongation.

340. But this last formula can be simplified. In fact, if
o2
the corrugations are sufficiently steep, the expression 2 (}E{> er

will represent a small fraction, so that we may write

O e

Simplifying the formula in this way, we find
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0
Sy
H = -g :
L, L02

or, again approximately and on the same basis as before, discarding
the comparatively insignificant negative term in the denominator,
we have

341. Accordingly, the tensile force may be assumed to Ye ap-
proximately proportional to the elongation er of the corrugated sur-

face. Let us not forget that this last formula is used when eF is

very small compared with the limiting elongation. This means that the
tensile force will be proportional to eF only at the very beginning,

whereas later it will increase at a much faster rate than er-

Thus, for the limiting elongation, putting E = 2 . 10° xg/cnf
L=2cm k=1/3, and h = 2/3, o = /22, 8 = 1.70 cm, we Tind from

the simplified formula H = 0.15 kg, but in actual fact
H = 0.4 kg [cf. (338)].

Consequently, when eF is close to the elastic limit, it is
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necessary to use formula (339).

Application of the Formulas to Straight Corrugations.
Various Systems of Folding and Convoluted
Metal Envelopes

34, It is clear from this chapter and from Chapter V that
in the folded state the corrugated surface of the aerostat envelope
may take one of two forms: the form of straight corrugations
(Chapter V) with crests at right angles to the principal longi-
tudinal axis of the envelope (Fig. 5), or the form of curved corru-
gations (Fig. 20). The calculations in Chapter VII relate to the
latter variant, the second form of the metal envelope.

The construction of an envelope of the first or straight-
corrugation type is incomparably simpler and consequently is more to
be recommended, particularly large aerostats, though this type of
envelope may also have certain disadvantages.

The formulas in Chapter VII are equally applicable to the
construction of a folding metal envelope with straight corrugations
(Fig. 5), except that some of them then prove superfluous, notably
(233), (23L4), and (236). But these formulas, of course, were neces-
sary to the derivation of other equations, without the aid of which
it would have been impossible to investigate the conditions and pre-
requisites for constructing the metal envelope of an aerostat.

My formulas are also applicable to the construction of a
dirigible with a soft envelope. Assuming, for instance, the simplest
possible design (Fig. 5) for an elongated envelope, we can use equa-
tions (240) and (241) to determine the size of the folds between the
strips of material (Fig. 2). Having sewn up this envelope, with the
proper folds [formula (253) may prove useful in this respect], we find
that the folds smooth out as the balloon is inflated and the surface
of revolution begins to take shape.

343, But we must not lose sight of the fact that these
formulas still require correction, since the cross section of the en-
velope is not a circle, as we assumed, but some other more complicated
curve (Fig. 1 and Fig. 15), the shape of which will depend in part on
the magnitude of the longitudinal tensile force acting on the corru-
gated surface; only when this force ig completely absent or when it
is ideally uniform will the shape be the same as that determined in
Chapter VI.
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z4l, The metal envelope of the aerostat could be made of several
flat strips (Fig. 2), without corrugations, so as to consist of say ten
or even fewer parts. But these parts must be connected by soft folds
(rubberized fabric or the 1ike), which smooth out when the elongated
bag is filled with gas and its cross section more or less approxi-
mates a circle or some other well-defined shape. The gmooth metal
surfaces may overlap each other, thereby protecting the folds.

In some instances, for example in testing models and in early
experiments, this type of envelope may find useful applications. The
aerostat will then be somewhat reminiscent of an insect covered with
rings which partially overlap each other. Here my formulas will be
required to calculate the shape and size of the soft folds¥.

3h45. Experiments on models reveal that a streamlined envelope
can even be based on two smooth surfaces of double curvature joined
in the middle by a single metal-shielded fold. The aerostat will have
approximately the same shape and the same properties as one made with
a corrugated surface.

346, Finally, my calculatlons and experiments on models also
indicate the possibility of designing a smooth aerostat entirely free
of folds. But the shape of the cross section will depart slightly
from that arrived at in Chapter VI and depicted in Figures 1, 15, 15.
Such aerostats are feasible given a slight change in volume (about
one tenth).

Envelopes in the last two categories have the further disad-
vantage, in addition to those noted earlier, that they cannot be
folded flat, so that they will present great difficulties in connec-
tion with the processes of fabrication and inflation.

#This aerostat was approved by Prof. zhukovskiy [Joukowski] and by
foreign specialists and patented internationally but T was the
first to reject it as being imperfect.
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VIII. THE PRINCIPAL LONGITUDINAL CROSS SECTION OF THE
ENVELOPE AND ITS PROPERTIES. SURFACE AND VOLUME
OF THE ENVELOPE. MOMENT OF THE WEIGHT
OF THE ENVELOPE AND MOMENT OF THE
LIFTING FORCE OF THE GAS.

Choice of Longitudinal Section of Envelope

347, The shape of the cross section of the aerostat is largely
determined by certain natural conditions: gas pressure, gravity, the
longitudinal elasticity of the corrugated surface. Even though we
can artificially influence these conditions to some extent, on the
whole the cross section of the envelope will retain its characteristic
shape (Figs. 1, 15). )

By contrast, the cross section of a ship depends more on the
designer. It is usually defined by a curve somewhere between a semi-
circle and the circumscribed rectangle, and is expressed as the
equation of the parabola:

xm
348, y:yl l-Tn>.
*1

Here x1 is the horizontal half-width of the cross section, and
¥, its height (Fig. 29).

The larger the value of m, the more closely the cross section
will approximate to a rectangle; when m = 1 the cross section becomes
a triangle. Clearly, m > 1. Moreover, m must be a fairly large
number in order to make the more or less rounded cross section closer
to a rectangle, minimize rolling, and raise the metacenter as high
as possible. The stability of the ship demands this shape, since
the stability will be the greater the higher the metacenter and the
lower the center of gravity.

349. In our case, the lateral rolling (Fig. 1) is reduced by
the enormous indented surface at the top of the envelope and by the
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gondola -- which acts as a keel. In addition, the low position of
the center of gravity and the high position of the metacenter give
the transverse section of the envelope excellent stability.

350. But the longitudinal section of the envelope, like a
ship's hull, may be given a variety of shapes: in a ship the central
longitudinal section may be defined approximately by the same para-
bolic curve (3L48) as the transverse section, except, of course, that
the ratio xl/yl 317 be much larger than in the case of the trans-

verse section, where it will usually be only slightly greater than
unity, whereas in the case of the longitudinal section the ratio may
be 10 or more.

The bow of a ship 1s sometimes made more convex and steeper
than the stem, in the manner of fishes or birds, the object being to
minimize the resistance of the water. As for m, it assumes a wide
range of values 1in different types of ships; in both transverse and
longitudinal sections the greater m the steeper the slope of the
curve and the greater the so-called fullness of the section and the
smount of water displaced.

Clearly, a decrease in m results in a certain decrease in the
drag of the hull and contributes to a higher speed through the water.

351. Theoretical attempts to determine the form offering
least resistance, and even experiments designed for that purpose,
have failed to yield useful results, and the principal laws which
have so far governed the design of ships have not been subtle and
sophisticated, but simply the traditional parabola and its equation
for both the longitudinal and transverse sections.

352. The shape of the longitudinal section of an aerostat
envelope 1s 1imited not only by the minimum resistance requirement
but also by convenience in construction and the requirement of ade-
quate longitudinal stability.

In order to achieve varisble volume and plane construction,
the aerostat must end in conical surfaces. Accordingly, rounded
ends, as in the case of an ellipsoid of revolution, are impractical
from this point of view. Moreover, we have seen (Chapter VII) that
certain shapes require & large metal envelope, if the volume is to be
safely varied.

This likewise places restrictions on the choice of envelope
shape.

But if we are not concerned about the size of the aerostat,
we are, of course, free to resort to other shapes, even to an
ellipsoid, except that the rounded ends must be replaced by conical
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surfaces tangent to the ellipsoid.

353. The traditional parabola used for ships thus deserves
our attention in relation both to the minimization of resistance and
to construction. Aside from my numerous experiments on air resistance¥, _
extending over many years, the very fact of the use of the parabola
in the design of ships is a compelling argument in support of its
advantages with respect to drag.

35%. Let us now turn our attention to the question of design.
I have already given the equation of a parabola:

Xm
y:yl l-;rﬁ)'
1

Hence
m=-2
dgy ylx
— =-mn(m-1) - <: .
) m
dx Xl

Consequently, on the basis of equation (302), we find -

5%5. v, = 27 (m-1)n <%_>2 noE (=)™
<GP

*Cf. my articles "Air resistance,”" "Horizontal motion of a dirigible,"
"Air pressure," and other works on drag.
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We have now found the radius yl of the center cross section of

a metal envelope folding elastically into a plane.
There are three possible cases:

m=2,m>2 and m < 2.

356. In the first case the equation of the parabola will be:
X2
y=Y (l———).
1
4

This is an ordinary parabola, i.e., a conic section. We
shall term its slope the average slope.
x m-2
In this case, the factor <5;{> in equation (355) will be
1
unity. Consequently, the dimension vy of the aerostat will not de-

pend on X, or on a most dangerous cross section. All the cross
sections will be equally dangerous or equally safe.

357. In the second case the curve will be steeper, i.e.,
more air will be displaced, the displacement being the greater the
higher the value of m. We can see from equation (355) that Yy will

depend on x or on the cross sections where the smooth cones begin.
The smaller the latter and the larger the ratio x/x1 the greater will

be the vertical dimension vy of the envelope. But we can not make

the smooth cones very large. The ratio X/Xl will therefore be
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roughly 9/10 to 4/5, but not less. It is to this range of values of
x/xl that vy must also correspond.

Consequently, in comparison to a simple conical parabola, the
m(m-1) /X m-2
dimension yl of the envelope will be ‘: 5 <—> ] or
. Xy
[rﬂm_:_i_ ( )p] times greater, where p is any positive number

equal to (m - 2).

358. 1If, for example, m = 3 while xﬁ = /5, then

1
_ m-2
ErenlCORREE

i.e., Yy will be 2.4 times greater than in the case of a conic section.

359. In the third case, when m < 2, yl will also depend on

x m-2
the ratio <—-—>
X

We may then write
&) @)
—— = — = — 3
Xy X, X,

where p is likewise any positive number less than two.
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Clearly, the dimension ¥y Will vary inversely with x; we must
therefore compute yl for the minimum X.

But when x = O, according to equation (555), vy is infinity,
so that in this case an aerostat will be impossible.

360. The reason why it is impossible at once becomes evident

when we turn our attention to the radius of curvature p of the para-
bola. It is:

, y§32m—2 el

j) L + m?x?
m (m - 1) X%m y§x2m-h

If we assume that m is some number at most slightly less than
two, we have m = 2 - p, where p is any positive number less than two.
The radius of curvature p will then be:

2 2-2p 2m_2p
-1 5 ¥, X x ¥ 5
362, p= —— (} + ‘> + mere.
m (m - 1) 2m 2
51 bAY

When x = 0, clearly, the radius of curvature will also vanish,
no matter how small P.

Here the infinitely large curvature at the center cross sec-
tion of the wetal envelope prevents its construction, even though at
a glance the curve appears to ve perfectly smooth, particularly when
m is only slightly less than two. But the further this exponent m
departs from two and the more closely it approaches unity, the more
noticeable will beconme the rounded angle in the center of the envelope,
and, in the 1imit when m = 1, the envelope will consist of two conical
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surfaces joined at the base. Thus, there is no point of even con-
sidering a parabolic envelope if m < 2.

363. We arrive at exactly the same result if we eliminate
the abscissa x from equation (355) by means of equation (348) for a
parabolic curve.

We obtain

and consequently:

m-1

y\ ™
1

W N o
by = 2 (- 1) (-}%) -h-(y},—

365. The ratio of the dimensions of this parabolic envelope
and a simple envelope (conic section) is

m-2

——

(m - 1) A
%G -Vl)m

Clearly, then, the smaller Y, or the radius of the base of the
base of the smooth cone, the greater will be the ratio of the dimen-
sions of the envelopes; 1in the limit it will attain the value

mm - 1
—L—"_—— 5 for example, in the case of a cubic parabola, we get three.
1 -2
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But the greater y, the smaller this ratio becomes, and when the
radius y of the smooth cone becomes equal to the dimension vy of the

center cross section, i.e., when the dimension of the parabolic en-
velope becomes infinitesimally small, it vanishes. This will become
clear from an inspection of formula (361) for the radius of curva-
ture, which goes to infinity at the center cross section where x = O.
Here an element of the surface is cylindrical.

! Y e

From the above we can derive the following summary based on
a parabolic curve: a) the curve varies vetween a triangle and a
rectangle (Fig. 29); b) construction of the envelope will be possible
only if m is equal to or greater than two; c) ‘the greater the ex-
ponent m, the greater the dimensions of the folding metal envelope;
d) the smallest dimensions of the envelope will correspond to m = 2,
i.e., to a conic section; e) the greater the value of m, the steeper
will be the slope of the curve and the more closely the curve will
approximate to a rectangle (Fig. 29); f) in the case of a conic
section, when m = 2, the radius of curvature (361) will vary ex-
tremely little, increasing imperceptibly from the middle of the
curve toward the extremities, as is clear from (361) on substituting
m = 2. We then obtain
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Clearly, as x increases, i.e., toward the ends of the aero-
stat, the radius of curvature increases. The minimum lies at x = = 0,
and the maximum at x = X

367. Consequently, the maximum radius of curvature

Ly
<:——— + 2y :) 1+ ——l,
max 2y 2
1 X
1
and the minimum radius of curvature
X2
1
p =
min Eyl
368. The ratio will be:
2 2
p Ly Ly
1ex = (l + —21> 1+ ——l.
pmin Xl 2

X1
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X

For example, if the aspect ratio of the aerostat 2. 6, the

y
1

ratio of the radii will be 1.17.

This means that the radius of curvature will increase only at
a very slow rate in the direction of the ends of the envelope, i.e.,
the curve will approximate an arc of a circle. The greater the

X
aspect ratio §l, the closer the approximation will be.
1

369. With respect to construction, we see that the following
curves are feasible; a parabola if the exponent m 2 2; an ellipse
with conical tips; a curve intermediate between these two, an
elongated cosinusoid.

O0f course, a multiplicity of other curves is also possible.

With respect to drag my experiments failed to reveal any
great difference even between such surfaces as an ellipsoid and a
surface of revolution whose generatrix is an arc of a circle. The
drag, moreover, also depends on the velocity. Thus, when the ve-
locity is low, rounded ends and a steeper forward section (nose
section) are advantageous. At higher velocities, these features
would be of little value. I shall merely stress that longitudinal
sections through the envelope should not have angles except at the
extremities, and that the curves should be smooth, like an arc of a
circle or a parabola.

370. Assuming that the metal envelope has the shape of a
surface of revolution, I shall now compute: the radius of curvature,
the arc length of the longitudinal cross section, the cross-sectional
areas, the surface area, the volume, the moment of the weight of the
envelope, and the moment of the 1lift force exerted by the gas.

General Formulas

371. For this purpose I shall make use of the following general
formulas: for the radius of curvature
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372. TFor the (exact) length of the arc:
dv~2
as = [1+ l) . dx.
ax

373. TFor the (exact) surface area:
F=2n I yds,
or approximately, if the envelope is elongated:
= 2m J ydx.

374. By expanding ds in series, we obtain more accurate
formulas for the length of the arc and the surface area:

o
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d

1)

I
i

" 8
b 23,) ( '@é’@%) 16< ) 12_8@% o

if we limit ourselves to three terms for the arc

For example,
we have

s and two for the surface area,
N N RO

376. j {1 + 3: (: j) } ax.

For the volume of a body of revolution we have (exactly):

377 U= E yedx.
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The area of the longitudinal section is (exactly):

378. Fd =2 f yax,

il.e., approximately m times less than the surface of revolution

(373).

379. By the moment of the envelope relative tc some plane M
I mean the product of the weight of an element of the envelope and
its distance x from that plane (Fig. 30). The total moment of the
envelope may be approximately expressed by the integral

Ménv = f 2mygxdx = 2mq f yxdx,

where q denotes the weight of the envelope per unit area.

Gravity is one of the destructive forces acting on the aero-
stat. The total moment of the envelope is a factor tending to cause
the collapse of the aerostat. It must be counteracted by the stiff-
ness of the envelope and the four longitudinal girders.

380. By the moment of the Lif't force relative to some plane
M (Fig. 30) I mean the product of the 1ift force of an element of the
gas and its distance from that plane. The total moment of the 1ift
force relative to the plane M may obviously be expressed exactly by
the integral

Méas = f ﬂayzxdx = TIa I yexdx,
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where a = 7 -y , i.e., is equal to the difference between the

air gas

density of the air and that of the gas filling the aerostat.

381. The total moment of the 1ift force is also a resultant,
but acts in the opposite direction to the total moment of the en-
velope. There 1s a third destructive force that depends on the
vapor pressure of the gas; its magnitude varies as a function of the
degree of inflation of the envelope. However, I shall discuss this
force separately later on.

Application of the General Formulas to a
Parabola (Conic Section)

382, Having derived the necessary formulas, I shall now show
how to apply them. Let us begin with the length of the arc of the
longitudinal section.

For a parabola the corresponding equation is:

2
y"‘l@"x—z');
1

and its first derivative:

ay _ N
dx X%

If we now put x = X;, W€ obtain, approximately, the trngent

of the angle made by the generatrix of the end cone with itr axis,
namely:
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Actually, the more elongated the aerostat, the smaller the
angle of the cone. From equation (375), we find on integrating that

x2y2 xHyt
2 2
583_ 5 = X (l + —3— . ——l‘ - g . _Tl ) .

L
X1 X1

The length of the entire arc from zero to x, is found by

putting x = x,. Then: 1

1
2o,
2 1 2 1
384, 5. = X (} + 3; -t ?; . -E:>
*1 *1

Discarding the last term here, we get the less accurate
formula:

2 A
8, = X, L+ — - -5 .
3 xE

For the surface area we make use of formula (376). On
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integrating, we find:

2 ¥ Ey]
385. F=2rrylx[l+}i§l<—§—':%--25—-—;{—l--;—>].

The surface area from zero to Xl ig found by putting X = Xl:

2
L 2 N
386. F —-B—Trylxl<l+€ x—21>’

or, less accurately:

From the preceding formulas, we cal find the length of the arc
from the end Xy to some intermediate point X, and likewise the sur-

face area; we shall obtain (sl - 5) and (F1 - F).

337. We find, approximately:

7

s = 8 =X <}-+ é; . X2j> - X <?-+ ?; . —;E— =
1

|
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and

388. The volume is found from formula (377). oOn integrating,
we find exactly:

U=m-. yix (} - § . ig + Eﬁt:>'
1

This is the volume from zero to x.
When x = Xy, we have:

8
389, Ul = — ny%xl.

The volume of the end section from x to xl

is:
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2 i
5X1'XQ‘%'%+%1>]-
1 1

X

[es]

390. U -U=rry2[

t—

391. The area of the longitudinal section is given by formula
(278). On integrating, we find exactly:

2
X
(-2
Fq y1X< >
31(1
When x = Xl’ we have

392. F.. = — ¥,%.;

the difference in areas

395 Fdl'Fdzyl[%xl'XO'fE)]‘
3%y

394, In order to determine the moment of the envelope, we
make use of formula (379).

On integrating, we find the moment of the envelope relative
to the center cross section M from x ©O X (Fig. 30):



182

2 2
in X

M =X x2<l-—>.
env - 5 Y1¥1 2
1

Formula (379) is only approximate. The exact formula is:

ds
M = 2mq f yx « — . dx.
env dx

But since ds differs only slightly from dx because of the
elongation of the envelope, and no great accuracy is required in de-
‘termining the moment of the gravitational forces, we may rest content
with formula (379).

395. If we put x = O in equation (394), we obtain the moment

from zero to xl:

env

396. The moment of the envelope relative to the plane N
(Fig. 30) from x to X, can also be computed without much trouble.
Thus:

2 b
T 8 X X X
M = -_qu (1_—. _+2 — - >
envN 2 12 3 X Xﬁ 3X1
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%97. In formula (380) we have an exact formula for determining
the moment of the lift force exerted by the gas. On integrating, we
£ind the moment of the gas from zero to X:

=
il

L
IR | G AR SR G 1 0

398. Putting x = %, in this equation, we obtain the total

'moment of the gas from zero to X -

399. The moment of (the lift force of) the gas relative to
the plane N (Fig. 38) from x to X, will be:

Note that in these formulas "a'" stands for the difference be-
tween the density of the air and the density of the gas filling the
aerostat (the specific 1lift force of the gas).
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Radil of Curvature for Various Curves

400. We have seen how smooth and gentle is the variation of
the radius of curvature of the arc of a conic section (368). We have
also seen that the radius of curvature of other parabolas varies quite
strongly, namely: from zero to some definite value when m < 2 and
the envelope cannot be successfully constructed, and from infinity to
some definite value when m > 2 (see formulas (361) to (365)).

4Ol. The equation of an ellipse with respect to its axes is:

2
X -
vy=y, [1-%X.
1 %2
1
And hence
4
y_o_ % x By
ax Ty 2 C2
5 x2 X7 dx2 X7
X 1 - =
1
X1

402, From these data and from (371) we now find the radius of
curvature:

' <2 2/3
p:[xi*( "2 )+ ] -

2 n[2ed(-5)]
1
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X
L4o3. For instance, when x = 0, p, = 2. x.. But when x = X,
Y1 Po
L= % yl. Hence, the highest ratio of the radii will be — =
1 s

b ST,
1
= (}?{) . This formula clearly shows how rapidly the radius of

1
curvature varies in the case of an ellipse. For example, when the
X
1
aspect ratio of the envelope is 6, i.e., o= 6, the greatest radius
1

will be 216 times larger than the smallest radius, whereas, in the
case of a parabola (m = 2) the same ratio yields a value only slightly
greater than unity (368).

Lok. Tn the case of a curve which I shall term intermediate
between an ellipse and a parabola:

3/4 -
( 2 dy >xy, 3 XYy 3yl_
y=v, 1" = HEE ol = - = = -3
1 %2 dx 4 5 2 2 N
1 2 X X]_
2Xl 1-—é'
*1
2
X
-%)
Py 3 v x3
dx2 b X%

405. And consequently:
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L
p: =
=
R S
L 2
xl x2
y /1 -
*1
2 9 ¥V / IR
L - =5 + l-—)
Lixc® 4 L 2
3y 2
1
o - X
2
X
1
-2x§
When x = 0, p = —=. But when x=x_, p = 0. As x tends
0 3y o
1
xel e
to zero, and assuming [ 1 - = =1 - -—5, we have
Xy 2xl
x2 9 ng?. x2 5/2
(1-:5)@ Tt =)
2
hxl 2 1 X, 2xl
p_O=———— =
X 3v4
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2> x2y2 2
SR 2GS D))
1 X, 2x1

Accordingly (in the case of highly elongated aerostats), we
have the approximate formula:

2
2 2
* 3x ')
px—ao = - 5——. 1 - )1—5 .

In the limit, when x
formula:

1

0, we obtain, as above, using this

2x2

p. .= - —

0 57,

When x tends to X5
2. 3/2
(2 y%)
4 L
*1 9 XE'Yi [ £
p. "X =< = e e [ ] - —,
X 1 2 Iy 2
1
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When x = Xl we may put Py = 0, but the ends of the envelope

will be rounded, so that the first derivative will become infinite
when x = x_. Thus, in the case of the intermediate curve, the radius

of curvature will continuously decrease from the center toward the
ends, even diminishing to zero.

Lo6. An elongated cosinusoid may be expressed by the equation

X
y = y. cos (— .
1 exq

Hence we have

Ty

dy Ty mx . a%y 1 (:ﬂx
- = = —— e gin | —— ) — = - cogs \ — J ,
dx 2xl 2%y dxe hx?_ 2xl

m Y P72
[“X‘Qi + myy sin (’é;? f

p:
o ™%
2mx cos( )

11 2%,
2
]
LOT7. Whenx =0, p = = = + —.
0 e 71

When x = X



189

almost straight segments, and this is a great advantage in construc-
ting our aerostat.

4o8. To sum up, when x = O the radii of curvature of a para-
bola, ellipse, intermediate curve, or elongated cosinusoid may be
expressed, respectively, as:

= 0.hos5.

&
The multiplier 5—, being the same in all cases, may be omitted.
1

The least radius in the central part of the curve corresponds to the
cosinusoid (about 2/5), and the greatest to the ellipse.

At the ends of the curves, the radii will be as follows, in
the same order as before:

2 2 2

X Lyt v

C 1 1 71
1 X Xy

Thus, it will vary only slightly in the case of the parabola,
decrease drastically in the case of the ellipse, even vanish in the
case of the intermediate curve, and become infinite in the case of
the elongated cosinusoid. At the same time, all the surfaces formed
by rotating these curves about their respective axes are Very smooth
and differ very little with respect to the resistance they present.
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Area of Maximum longitudinal Section for Different Shapes

409. For a parabola (392) the area of the maximum longitudinal
section is:

For an ellipse, we find:
¥
F_= L [x [ 1 §§ + X, arc sin.<}§{> ] .
a 2 <2 1 X,
1

Now if x = X5 the total area from zero to Xt

T
410. Clearly, then, the section of an ellipsoid is é— or
1.178 times fuller.
For the intermediate curve:

2. 3/4
X21> ax.

Fd:ylj<l'

X
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411. Expanding in series and integrating, we find

Discarding all but the first two terms,
1 x°
F. o= - = . =
a =7 C b x2
1

The area from zero to x, will be equal to EZ . ylxl, i.e.,

1 L
slightly less than for an ellipse.

412, More exactly, taking three terms into consideration, we
obtain:

no
=

2.
160

¥
e

)

1
Fd_ylx< T

o
= N

X

=

which, when x = Xl’ yields a slightly lower figure, viz.
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Y _
a- o ylxl = 0.73125 ylxl.

413, Taking all the terms computed in (411), we find 0.723225.
For an ellipsoid, (409) gives 0.785398, i.e., an appreciably higher
figure.

In the case of an elongated cosinusoid, the area of the prin-
cipal longitudinal section will be

F_o = 2 X, sin (}IE£{>
a® 7 1% 2x, 7’

2
which, for x = x,, ylelds = Yy

11

This area is even smaller than that for a parabola, to be pre-

1

il
cise — or 1.0472 times smaller.

Length of Arc of Principal Longitudinal Section

(384): L1k, The length of the arc of a parabola from zero to Xy is

2
51 = X (ﬁ + ?; .

] l <
H M=o
1
wi|ro
M|<<:
[l e[S s
AN
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x
For instance, when 2. 6, s. = x, + 1.01821.
v 1

415. For an ellipse (37T4):

x2y2 thh
S=S[“'é‘ = -%. L sl e
L - x2) £ (2 - )2 w
1 1

h16. It is easy to integrate this expression. Restricting
ourselves to two terms, we find

senr it m(20)
hxl x, ~x”
or
X
s 1 e % l+}?]-_
—_— =1+ —(— + — + 1ln .
X i X1 X 1. X
*1
The equation is inapplicable when ;i is close to unity. If
we put 1
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we arrive at

— = 1.10122L,
1

There are formulas for determining the total length of the
circumference of an ellipse, but we shall have no need for these,
since the ends of the ellipsoid of revolution must in any case be
replaced with cones.

hi7. 1In determining the arc of an ellipse, we can also ex-
pand its equation

in series:

L £ 8B 10
i 1 oxr 1 x5 ox2 35 xYo
y= (l 2" B %3 1I®'8 5% 10 )
X1 X X Xy 1

418. 1In the case of an intermediate curve, formula (375) no
longer applies. But, on expanding the equation for an intermediate
curve, we Tind

vy (-2 2 3w s s 2 Y
L B2 32 b o128 6 2088 8
1 1 1 1
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Hence, clearly, from the preceding equation, if the ratio ES
X
1
is not too close to unity, both the ellipse and the intermediate
curve can be regarded as parabolas, soO that the length of the curves
can be determined in conformity with the procedure established for a
parabola.

419. The length of the arc of an intermediate curve 1s ex-
pressed, exactly, by the integral

s = g 1+ 9x£y§ « dx.

/2
hxu (} - §E /
1 <2
1

420. Rectification of the elongated cosinusoid does not pre-
sent any difficulties, aside from its complexity. In fact, the
equation of the curve will be

¥y = yl cos W,
where
W = —=——.

2x

Here cos ® may not be greater than unity.
The first derivative is:
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&y m sin w
— = - s
dx ?
where
R4
m= -—,
2
*1

m being always much less than unity.
Now, using formula (375), we find

L 6
s=j‘[l+§-- sinew-n-é—-sinhw+lf—6- sin6w-...]dx.

Limiting ourselves, for example, to two terms and integrating,
we find

VI mx

s =X+ — | — =~ sin —
16xq ~ xq Xy

k21, Putting x = X, We now find the length of the arc from
zero to Xt
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Surface Areas of Different Bodies of Revolution

4oo . Let us now consider the surface areas of the bodies of
revolution (376). 1In the case of an ellipse, formula (376) yields:

If, in view of the elongation of the metal envelope, we take

d
£ = 1, formula (376) reduces to the simpler form:

1. F:Qﬂjyd_)c:Enylj/l—z—eédx,
1

which yields

2
Fzrrylxlci{— l-§—+arcsin-}5>.
X]_ x% Xl

When x = X

S

F. = =" xlyl;
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this is one-half the surface area of an ellipsoid of revolution from
zero to x,.
1
4b2L. But we can also find the surface area of an ellipsoid
exactly. 1In fact, equation (L423) yields

21y

F=—l'§jxu-x2 (xe—y2) dx =
5 1 1
*1

D
™y x 7y
N Y
Xg _ o) Xl xl
1~ "1

2 : (:X
+ x° arc sin ( —

1 X
1

ko5, When x = x, we obtain

1

(- D7
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I
If the ellipse is infinitely elongated, then == 0 and
1

Fl =

s
2

TYx F ﬂyﬁ.

Neglecting the last term as infinitesimally small (compared
to the first term), we arrive at formula (423).

ko6, For the surface area of the body of revolution formed
by rotating an intermediate curve, we have from (373), approximately:

N
poom, ]G D) e
*1

Expanding and integrating, we have

2 4 6
1 x 3 X 5 X
F o= 2 L = = ¢ = m e e e s - ),
AL ( L2 160 b 896 6 )
1 1 1

L27. When x = X, we find the surface area of the body of

revolution from zero to X1 namely:
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i.e., less than 3/4 of the surface area of the circumscribed cylinder.

4o8. We obtain more exact results when, in accordance with
(373), we f£ind the integral:

i 22 —1/2
o G T e
' xi I x° 1/2
)+Xl <1 - —2'>
N xl -
2-9/2 92 D
I g

k29, For an elongated cosinusoid, we obtain (assuming ds = dx,
approximately):

. mXx
F = hxlyl . 51n<2x1> .

When x = x,:
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Accordingly, the surface area of the end section from x to Xy

will be:

X
F, -F= hxlyl [1 - sin<2x1>] .

430. We obtain, exactly:

2
X1

=
j) v/l + uyi sin2 (:;:1:) « dx.

X
F = 2ﬂyl g cos<:
2xl

This expression can easily be integrated, giving

P
431, F=ny2{Sin(ez};>/j;;‘2+sin2<211:.> .
1
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The formulas will be simpler if we introduce hyperbolic func-
tions.

432. For an infinite aspect ratio, we obtain the familiar
formula

F = Ix (cf. equation (k29)).

171

Volumes of Different Bodies of Revolution

433, The exact volume of an ellipsoid of revolution from zero
to x is:

2
U= ﬂyix (} - -—5j> .

%4

The volume from zero to xl will be

43, On comparing this with the volume obtained by rotating
a parabola, we find that the volume of the ellipsoid, given the sawme

values for x, and y,, will be 5/k or 1-1/k times fuller.
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435, The volume of an intermediate curve 1s expressed exactly,
according to the general formula, by the integral

5 0. 3/2
X
U= Y4 S <ﬁ - — dx.
2
*1

Expanding and integrating, we find

2 4 6 8
1 X 3 X 1 X 1 X
= ny2 1 - — = = — _— — —_ pii .
v 1X< 2 27k ntle eTmc st )
X1 S X X

436, When x = X,, we find approximately, confining ourselves

to the terms given:

Uy = 0.587ny§x1.

This volume is 1.103 times fuller than the parabolic volume.

437. The volume of the body obtained by rotating an elongated
cosinusoid about its axis, from zero to x, is expressed exactly by
the formula
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When x = xl, we have

i
Ul = —2- . y‘,]a_xl.

This volume turns out to be 16/15 or 11/15 times less than the
volume of a parabolic envelope.

Moments of Envelopes of Different Shapes

438, The moment of the envelope of an ellipsoid is expressed
exactly by the integral (370):
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3 _ 3
W 2oL . ath e Aty ¢
env 3 W% o o 3 @) :
¥ -0 21tn

40, This is the moment about the center plane (Fig. 30). We

find the moment about a plane N on the basis of equations (438) and
(439); we have

q (F1 -F) (x+ &x) = Menvl - Menv

where Ax denotes the distance of the center of gravity of the sur-

face of the end (Fl - F) of the envelope from the plane N; Menv is
1

the total moment, and Ménv is the moment of that part of the envelope
from zero to x.
We have, from this equation,

MenvN =a (F) - F) &x = Menv1 "My T 2 (Fl - F) x,

i.e., the moment of the end of the envelope about the plane N (Fig.
30).

441, This equation is applicable to any shape. In the case
of an ellipsoid, we find the moment (about N):
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F, and F are obtainable from (42L) and (L25).

1

kip,  In the case of an intermediate curve, the moment of the
envelope from zero to x about M will, if we assume ds = dx approxi-
mately, be equal to

2 /%
MEnV:-'l%ﬂqylxi[l-<l—?> ].
1

The total moment about M will be:

443, The moment of the end of the envelope F; - F about the
plane N is found, from (4hO), to be:

/4

L 2 x2
MenvN = :? Ty, %] <} - —Ei> -q (F1 F) x.
*1

We find the difference (F1 - F) from equations (L26) to (428).

4L, For an elongated cosinusoid, the moment about the plane
M will be, approximately:
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M= om j (: X j) dx
onv = q_yl cOsS 2Xl x .

Integrating by parts and determining the constant of integra-

tion in the usual way, we find

2x

X
M = bgy x [xsin-—TE—-—l'Cl-cos——>].
env 11 2xl 1 2x1

445, When x = X, W€ have

_ 2 . E)
Menv1 - h-qylxl (l n/

To determine the moment of the end of the envelope, we have
formulas (440) and (429) to (431) at our disposal.

Moment of Lift Force for Envelopes of Different Shapes

W&, Tn the case of an ellipsoid, we find exactly (with

respect to the plane M) :

M =%-ay21x2<l--}—c%>.

eas 2Xl
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The total moment of the 1ift force

_ 2
Mgas'" m ay?xl.

Here a is the specific lift force exerted by the filling gas.

Lh7.  The total moment Méas of the end U; - U relative to the

plane N is found from a formula similar to (4k0), viz.

where Ax is, as above, the distance from the center of pressure of

the gas filling the end U1 - U of the envelope to the plane N (Fig.
30).

L8, Thus, for an ellipsoid, we find exactly, on the basis
of the last formulas mentioned and formula (ﬁBB):

S 2
g B AT 2 G- 5] A [§ 2 (D))

n

2

X 2 2

i 30 E) 2aned G- 2]
1

[
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2
SI.a [xlg-%x)mz(l-:__z)].

X1

4h9, In the case of an intermediate curve, the moment of the
1ift force from zero to x, relative To the principal cross section M,
will [cf. general formulas (371)] be expressed exactly by the formula

2. 5/2
Mgas=%'ay§x%[l— 1-3;—%9 ]

The total moment aboubt the plane M (Fig. 30) is

- 4 . ayox
p

450. The total moment of the 1lift force about the plane N
£ the last two formulas,

may be expressed exactly, on the basis ©O
general formula (LL7), and formula (435), by the equation

0

0. 5/2
e (3G -2 G- 30D

7
gz <} - fg; + 1 <} - 31;) 5%3—<? - §§%>-+ ...] } .
1

%1
1
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Since this formula may be used only when gﬁ < 1, the series

will converge rapidly,

and consequently only the first few terms will
be needed.

U51. In the case of an elo
the 1ift force about the

eéxactly by the formuls

ngated cosinusoid, the moment of
blane M, from zero to X, may be expressed

T

! LIPS X X% X
Mgas = -5 ay? {X[-ﬁ S1in (q}-l- -2~ - Tz [l - COSs (;;)] }

452, When X = X, we obtain the total moment about M, viz.:

Méasl - %} ) ayixi (ﬁ B ;%{)'

453, The moment about N from x to xl is found from the ex-
pPression

X 52 X
e ot e g e ()] 14 2 0 ()] )
MgasN_e ayjeL{2 ne 1 + cos - xxl 1+n31n p— +2 .

If the distribution of the weight of the hoops sup
envelope is proportional to the

may be found as the moment of g

pporting the
surface area, the moment of the hoops
surface of constant thickness.
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The moments of the envelope and the 1ift force are an €Xpres-
sion of certain forces which tend to destroy the envelope of the aero-
stat and its frame. For the time being, W€ shall find only the
moment of an envelope of constant thickness. Actually, the envelope,
the hoops, and the longitudinal girders may all vary in thickmess,
so that their moments should be determined with that possibility in
mind. Clearly then, the problem of the moments can not be completely
solved in this chapter, since we are not now in a position to derive
the relation between the thickness of the envelope OT the framing
and the corresponding spatial coordinates.

Aside from the envelope moments and the 1ift force, there 18
one othexr force capable of exerting a crucial influence on the
stability of the envelope: the pressure of the gas filling the
serostat, or the pressure (overpressure) ot the lowest point of the
envelope. This pressure may be infinitely variable, while the
moments of the envelope of the 1ift force are dependent upon it only
to a very slight extent, at least when the gas pressure 1is fairly
high. 1 deal with this aspect of the problem in the next chapter.
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IX. PRESSURE OF GAS ON CROSS SECTION
OF AEROSTAT. CENTER OF PRESSURE,

b5k,  For brevity I shall refer to the difference between the
€as pressure and the air pressure at any point on the envelope of
the aserostat simply as the gas pressure. This pressure is ob-
viously the same for any horizontal plane. It depends on the pres-
sure at the low point B of the envelope and on the height of a
given point of the envelope above that low point (Figures 31 and 32),

pressed as the length ¥z of & column of gas or of a tube or appendix
filled with the same gas as the aerostat. This tube is assumed to be
open at the bottom.

455%, S0 long as the axis is not tilted, the pressure in
the direction of the longitudinal axis of the envelope will be the
same, namely y + y . The pressure at the lowest point of any cross
1
section will be y = Yy +Y -y, where y 1is the radius of the cross
2 3
section in question. The pressure at the highest point of a given
cross section wiil be y + Y o+ y.
1



215

The pressure at & point whose height relative to the lowest
point of the cross section (Fig. 30) is y 1is glven by the formuls
z

y +y =y +y -7V +y .

456. 1In view of the symmetry of the pressure relative to
the longitudinal axis of the envelODe€, the total ges pressure¥ P
on any Cross section of the envelope may be expressed quite simply,
cince the average pressure over the cross section may be assumed
equal to the pressure along the longitudinal axis, namely
y + 7Y .

3 1
Thus:

2
F=may (y +7 )
31

457, The pressure oOn the principal cross section is

P =may: (y +V ) -
3 1

1

% Rather, the total force.
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Ifweputy =y , then P = 2ﬂay3.

1 o 1
If we also put a = 1.2 ke/m’, then P = T.5ky°. From the last
1

formula we readily see that the pressure on the principal cross
section is proportional to the cube of the height of the envelope,

Formula (456) is the general formula in which ¥y = F(x).

458, The pressure P 1is applied nonuniformly over the cross
section of the envelope and over the longitudinal girders, so that
the center of pressure lies above the longitudinal axis; but it will
increasingly approach this axis as the cross section diminishes, i.e.,
as we approach the end of the envelope,

The moment of this bressure P about the horizontal plane A

1
or B may be expressed approximately, for the ends of the aerostat,
1
as:
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)
py=Ta (y +¥ )V .
1 3

459. We can find the position of the center of pressure
and the magnitude of the pressure exactly for any Cross section
through the envelope (Fig. 32)., The differential of the gas pres-
sure on the cross section is

ap=a (y +y ) " 2zdy .
2 Z Z

In accordance with the equaticn of a circle

Z=VY2'(Y'Y)2-

z

460. We may therefore express the pressure in terms of the
integral

P=2Xa(y +y)\/y2-(y—y)2-

Here (455) yields
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This equation must be integrated with respect to y , assuming y to

Z
be constant,

461. Once this is done and the constants have been determined,
we have

]
2y

n 2 2
P=alz(y +v )y --4J(oyy -y
{ 2 3 1 3‘/ 4 z

2

iR

-(y +y )[(y-y ) [ 2y 5"+ ¥ arc sin %}j} .
3 1 z V z z

462, For instance, if we put Yy =2y, we obtain the total
Z
pressure

2
P=ma(y +y )y,
3 1

i.e., the familiar formula (457), which we have rigorously proved.
When v = Yy, then
z

P=3E(y§+yl)y2—§y3]'
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Putting y =¥ =Y , V€ find P for the center cross section
1

through the envelope:

5 1
P =2y \5 3/’
1 5

the pressure on the lower half of the cross section will be slightly
less than half the total pressure.

463, The differential of the moment M of the pressure
with respect to a horizontal plane passing through the low point
B of the cross section (Fig. zp) is, according to (459):

1

vy dP = 2ay (Y2+Y)»\/y2-(y-y)2dy .

Z Z

lIntegrating this equation with respect to ¥ and determining
the constant of integration, Wwe have z

¥ =M=ay (y+y ¥ ¥) |5y - \¥V¥ ) 2yy - Y -
Z 5 1 b 2 ( 7, v, Z

1
The method of integration is not described, even though it is com-
plicated, inasmuch as it introduces nothing basically new.
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- v N7 {
- % - 3 are sin (2 ‘y-z J-a «/(2313'2 - ¥2Y
Z Z

-

Lg(y3+y +y)+:-L(y-y)j
5 1 2 z

.
i~

b6h. When y = 2y, we find, for the total moment
Z

SydP=aTTy3(y rY o+ Ty)
z 5 1 7

But when y =1y = Y , we have for the center cross section

1

465. Now, dividing the moment M of the

total pressure by
the value of the pressure (462), we find

%=3’[l + h(y3y+ yl) ] ’

i.e., the distance of the center of pressure from the low point of
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the cross section B .

- 1

Since it is clear from the formula that this distance is great-
er than y, we find that the center will consistently lie above the
longitudinal axis, or above the center of the circle. The same for-
mula also shows that the greater the pressure y at the low point of
3
the envelope and the greater the vertical dimension y of the en-
1

velope the closer together these centers will lie.

466. TFor the center cross section, we must put y =y in the

last formula; we then have 1

r 1 1
_ l+——7yﬁ-J.
y1L u‘i”l)

&

Hl=

Clearly, the greater the value of the ratio y /y of the
5 1
pressure at the low point of the envelope to the vertical di-
mension 2y of the envelope, the closer the center of pressure will
1

lie to the longitudinal axis.

467. Putting, for example, y =y we find
3 1

Once the position of the center of pressure is known, it is
not difficult to find the gas pressure on the two longitudinal
girders, assuming that the entire pressure is transmitted ex-
clusively to these members., TFor exgmple, in the case considered
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here, the moment arms of the component forces are related as

9/8y to /8y .
1 1
Accordingly, the ratio of the arms will be 9/7. This means
that the lower component will be related to the upper in the pro-
portion of 7T to 9. When y = 0, i.e., when the pressure at the low
5

point is zero, we have

o] e
]
=N
o

and accordingly, the moment arms of the component forces will be in

the proportion of 5/4 vy to j/hy , and the forces will be in the pro-
1 1

portion of 3 to 5. The upper force will thus be almost twice (1-2/3)

as great as the lower force. Clearly, the ratio of the component

forees will be closer to unity at the other cross sections.

468. The general formula for the ratio of the component
forces is

The ratio of the moment arms of the forces will be the re-
ciprocal.

469. The mass moment of & narrow annulus of the envelope
defined by two closely spaced parallel cross sections is-
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2nyqy ds,

where q is the weight per unit area of the envelope, ard y 1s the
Z
distance of the cross section from the plane about which the moment
is determined.
The moment of the other parts of the serostat, included be-
tween the same parallel Cross sections, may be designated as

Py d .

470, The moment of the 1lift force exerted by the gas at
the same cross section will be

amy y dy

If the loads and masses are SO distributed that the total
moment at any cross section is equal to the moment of the 1ift
force at that section, then these opposing forces will cancel out
and, by studying the longitudinal pressures acting on the envelope
and the girders, we shall be able to examine the effect of the gas
pressure alone. Tn this particular case we shall be free to ignore
the moments due to gravity and the 1ift force exerted by the gas.
The middle part of the aerostat may be so designed, but not the
ends, which would then be too thin and fragile for practical pur-
poses,
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X. A SURVEY OF THE PRINCIPAL FORCES ACTING ON THE ENVELOPE
OF THE AEROSTAT; THEIR INTERREIATTIONSHIPS

Iongitudinal Forces

Y71, In view of the corrugated design of the envelope and
the variation in its volume and shape, the tensile force in the
longitudinal direction will evidently be highly variable, so
that there will be some doubt as to the safety factor.

The longitudinal forces tending to destroy the aerostat must
be resisted by the longitudinal girders alone, Thus, in studying
the longitudinal forces T shall neglect the role of the envelope and,
for the time being, consider only the four longitudinal girders
(Fig. 1 and Fig. 6).

Any cross section, for example, AB (Fig. 31), will be acted
upon by the following principal longitudinal forces:

a) the weight of the envelope, which will produce the
moment of the envelope;

b) the weight of the longitudinal girders, hoops (which
may be regarded as integral with the envelope), gondola, machinery,
bassengers, and cargo; the action of these forces will also be
expressed as moments about the cross section under consideration;

c) the 1ift force of the gas acting in the opposite di-
rection, a factor which we have already discussed in Some detail;

d) the gas pressure at any cross section; this force
depends on the degree of inflation of the envelope.

LT2. The first of these forces (gravity) places the upper
pair of girders in tension and the bottom rair in an equal state
of compression; the second (1ift force) has the opposite effect,
i.e., it produces a compressive stress in the upper girders and a
tensile stress in the lower ones; finally, the gas pressure tends
to place all the girders in tension.

Designating the moments of these three forces as MT, MG, and
MB’ respectively, we find that the upper girders are acted upon by
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the resultant

— - __g—- d — = s
2y 2y 2y 2y

he radius of the cross section, and MB is the moment

where y 1is t
rizontal plane passing through

of the gas pressure relative to & ho

the point A.
n the bottom girders will be

473, Likewise, the force acting O
expressed by the formula

___+_-+—- =.__._—-——'—"—“_—,
2y

oy 2y &Y

+ of the gas pressure relative to B.

where MA is the momen

parts of the envelope at some distance
the envelope may equal to the moment

i.e.,

47k, For the middle
from the ends, the moment of
of the 1ift force of the gas,

o deal only with the tensile force Pro-
But this does not apply nearer the ends

so that we ghall then have t
nt of the 1lift force will be

duced by the gas pressure.
of the envelope; there the mome
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negligible compared to the moment of the envelope (Chapter IX),

of the same dimensions. As g consequence, & decrease in the 1ift
force will be realized much faster by reducing the surface area than
by reducing the weight of the cone.

Yrs, Neglecting the 1ift force of the end sections of the
envelope, we find that the upper girders will be acted upon by a

The first of these forces is always positive, so that it can
only place the girders in tension; the Second, on the other hand,
may be either positive or negative, depending on the circumstances,

If the moment of the gas pressure is greater than the moment
of the eénvelope, it will produce a tensile stresg in the girders;
otherwise the soft or thin and flexible envelope will sag, and the
ends will droop downward forming irregular folds,

476, The resultant for the conical ends of the envelope
may be derived from the above complicated formulas, but it is
simpler to take an independent approach (Fig. 31, left).

The gas pressure on the cone [ef. formula (k62)]
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2 N
P=maly +¥ )7V
3 1

the moment of this pressure about A or B:

3
M =maly + V)Y,
g 3 1

is directly evident from formula (464 ), where

which, by the way,
g relatively small, may be neglected.

the quantity L/hy, bein

h77. The weight of the conical part of the envelope

qmyl ,

where lg is the generatrix, and y 1is the radius of the base.

Its moment aboutb points B oOr A will be:

=
1
=
g
=
1

but

1 cos @&

=
]
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and

v =1 sin @,

where @ is the angle formed by the axis of the cone and its genera-
trix, Accordingly,

3
M =ma(y. +y )1 sin3 o,
g 3 1" g

L] 3 o
qlg sin @ cos o;

H
W ot d

the ratio of the moments is expressed by the formula

M
= _ * sin o,
M q cos o

T

478. Clearly, this ratio will increase with the pressure at
the lowest point y3 of the envelope, and vary inversely with the

welght of the conical surface 9. Wheny =y

5 L

bay

., 2
sin <&,

cos @

Hg IO'Qz

q
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Here the angle @ may be found from the derivative dy/dx,
since

d
@ = arc tan(ﬁ),

where X = X .

Under ordinary conditions, and even when the aspect ratio of
the envelope is considerable, the ratio of the moments will be greater
than unity, and therefore even the ends of & soft envelope will not

58.8.

479. TFormula (ULTT7) may be recast in the form:

2
M 3a(y3 +y,) @—@

24
M

[ qy N 2
T g, 1+(@x.)

1f the elongation is considerable, we may assume approximately
that

=

g > @X>2
v q '(y3+yl)<dxj .

H
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480. <o far, we have not considered the weight of the frame-
work of the gondola and the live loads or their moments.

These loads are proportional to the length; +thus the moments
are approximately proportional to the square, while the moment of the
gas pressure is proportional to the cube of the linear dimensions of
the cone; consequently, if the cone is sufficiently small the mass
moment will exceed the moment of the gas pressure, and then the en-
velope would sag, were it not for its rigidity and the rigidity of
the longitudinal girders and other possible framing in the conical
ends of the envelope. Accordingly, we may even neglect the gas
pressure, and base the calculations exclusively on the strength
of the rigid parts of the envelope.

481, Moreover, if we consider that the shape of the serostat
not only departs from that of a surface of revolution (Figures 1, 2,
5), but has an intermediate section in the form of an elongated
cylinder (Fig. 1, Fig. 2), then the moment of the gas bressure at
the ends will be approximately proportional to the square of the
linear dimensions of the cross section, just like the moment of the
girders, and so forth, Consequently, the gas pressure may even
cancel out the dead weight of the framing, if the members are
reasonably light and the central cylinder (Fig. 2) is sufficiently
wide.

482, Referring, for the time being, to my early scheme for
an airship carrying 200 passengers (Fig. 1), I shall present a few
figures to illustrate the relations between the forces acting on the
envelope of the aerostat.

For the sake of simplicity, let us assume that the load et any
cross section corresponds to the 1ift force; then the effect of the
gas pressure will be most apparent. But what force will it exert on
the four longitudinal girders?

To solve this problem, we can make use of the simple formula
(456), putting ¥ =Y We obtain

: i

2
P=2mayy,
1

or, taking into account the equation of the generatrix
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2 N
e X
y=y 1’;):
1 1
we have
2
7 X2\
P = 21Tay3 1 - — .
1 k‘ xi

You may remember that y , the radius of the principal cross
1
section, is 15 meters and that the length of the aerostat is
> x = 210 meters; I shall use the round figure of 200 meters and
1
assume that a = 0.001 ton per cubic meter (where a is the
specific 1lift force of the gas, in tons per cubic meter).

483, We now calculate P, the pressure acting on the four
longitudinal girders, in terms of x and y (Table 3).

TABLE 3
x, meters 0 20 Lo 50 60 TO 80 90 100
y, meters 15 14,50l 12.60 11.25| 9.60] T.65] s5.40} 2.85] 0.00

P, tons 21.07{19.38| 14.95} 11.80} 8.64| 5.48] 2.74} 0.76] 0.00
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Tt turns out that at the center the pressure exceeds 21 tons.
Even 10 meters from the end of the envelope, where the radius y is
less than 3 meters, the pressure is 760 kg.

484, TIn computing this pressure, I assumed a circular cross
section and paid no attention to the width of the center longitudinal
strip (Fig. 2). But this last factor cannot be ignored, particularly
at the ends of the envelope,

The area of the additional rectangular section (Fig. 1 and
Fig. 2) is 2yb, where b is the width of the section; on multi-
plying this area by the average gas pressure at the longitudinal
axis, a(y + y ), we arrive at the total supplementary pressure

3 1
on the four longitudinal girders: 2 ab(y + y )y or, taking
3 171

into account the equation of the generstrix:

/7 2
2aby (y +y )(F - ) .
13 1 2
1

Putting y =y , we have

485, Thus, for x = 10 meters we have y = 2.85 meters, and
the supplementary pressure will be 171 kg for a width b = 1 meter.

As we approach the ends of the envelope, the relative in-
tensity of this supplementary pressure will increase to the point
where 1t completely predominates.

Nevertheless, if s gallery is designed to run the full length
of the envelope or machinery is located near the ends, it would be
impossible to rely exclusively on the gas pressure, since in this
case, the moment could not balance the moment due to the dead load.
We must then consider seriously whether the ends of the envelope and
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their framing can withstand the resulting compression. Detailed
calculations would pe somewhat premature at this point; accordingly,
I shall first turn to the transverse circumferential tension in a
direction at right angles to the longitudinal axis of the serostat.

Transverse Forces

L86. TIf the acrostat is elongated and the longitudinal ten-
gion is weak, & narrow strip between two adjacent cTross sections may
legitimately be treated in isolation (Fig. 15).

We have found (159) that the gas pressure on unit surface
area of the envelope 1is aly +v¥ ). If, for instance, we wish to

know the pressure at the highest point of the center cross section,
we insert in that formula, a = 0.001, ¥y =¥ = 15 meters, ¥y = 2y =
1 1

= 30 meters; we then find % &8y = 45 kg per square meter of envelope
1

surface.
487. Assuming & circular cross section (Fig. 31, 32), we

obtain the following expression for the transverse horizontal pres-
sure:

o a 2 a D 2 Y
\aly +y Ydy = (y+y ) -5 Y, 7 & (oyy 4y ) =28y (¥ +-£),
2 7 s 2 2 z 2 2 2 0y Z z 22

where, according to formula (L455):

y =y *y ~ ¥
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where y is the radius.

488, For the total pressure y = 2y, so that we get 2 ay,
Z

(v +v).
3 1
For the center cross section Yy =Y , 80 that we end up with
1
cay (y + ¥ ). When Y =Y , the pressure will be 4 ayg. The width
1 3 1 3 1 1

of the cross section is taken as unity.

489. The total pressure on the principal longitudinal
section through the envelope may be expressed as the average
pressure along the axis aly + y ) multiplied by the area of that

1
section (378).

490. The moment of the transverse gas pressure about the
low point is given by the formula

491. For the total moment of the pressure, putting y =y, we
find: z
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2
oay (v + 4W/3y),
2

but since

y =y vy -9,

then

o
M=2oay (y +7 + 1/3y).
3 1

ession by the pressure (488),

492, Dividing this last expr
f pressure from the low point

we obtain the distance of the center o
of the section:

y * (v + vy + V/3)
1= .
(v_+7v)

5 1

ure lies slightly above whe
but the closer to that axis the
or the closer the section

Clearly, the center of press
longitudinal axis of the envelope,
smaller the value of ¥ relative to ¥ ,

1

to the end of the envelope.

493, TFor the center section y =7V 3

again putting y =7
1 3 1
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we find that the distance to the center of pressure will be T/6y ;

1
consequently, the ratio of the upper component of the pressure to the
lower component will be as 7/6 to 5/6, or as 7 to 5.

Under the same conditions, the distance to the center of the
longitudinal forces will be 9/8y » 1.e., slightly less (by l/2hy ).
1 1

49k, If in the last formula we put y = y andy =0, i.e.,
1 3
at the center section, we shall find that the center lies at )
distance 4/3y above the lowest point, that is, again above the
1
center of the longitudinal forces (5/hy ), this time by 1/12y .
1 L

495, There is a possibility of carrying out a more exact
investigation of the transverse forces acting on a strip of the
envelope (Fig. 15).

Imagine that the strip slides (or is positioned ) over
frictionless pulley blocks. It is clear that the tension would be the
same over the entire length if the strip were weightless. Because of
gravity, the tension in the direction of an element of the curve will
be equal to some constant plus a function of the weight of the under-
lying portion of the envelope., Clearly, then, the minimum tension
will exist at the low point of the envelope, This tension will in-
crease continuously with the length of the element of the curve, and
will attain a maximum at the high point of the envelope, at the
height h .

Clearly each element ds of the envelope, weighing qds, adds
an amount qdy to the tension. The tension on the envelope at any
point may therefore be expressed by the integral

o
3 gdy + C = qy + c,

where C is the constant stress when y = 0.

Clearly, the tension on two elements of the envelope located
at the same height y will be identical.
If the tension C at the high point or, in general, at any
1
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point, is known, the height of the point being h, then the tension
at any other lower point will be C; — q (h - y).

4o6. We can get an idea of the tension in the depression at
the top of the envelope (Fig. 1), where it forms an angle 2q, from
the magnitude of this angle and the corresponding load, assuming that
the parts of the gondola are unconnected, or sufficiently flexible,
or hinged. The greater the load and the larger the angle 2a the
greater the tension. Tt is not difficult to derive a formula for
the tension C in the depression. Thus,

P
C =

- J
2 cos O

where P is the part of the load acting on a given strip of the en-

velope.
Thus, the tension at any point will be given by the formula

P
2 cos O

- q (h - Y)>

where h is the height or ordinate of the apex of the angle formed by
the depression. For example, at the low point y = 0, and the tension

will then be

Since the curve at any cross gection can easily be drawn (see
Chapter VI), there will be no difficulty in determining h and a, sO
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that the value of the tensile force can always be found.

LoT#*. We have seen (Chapter VI) that the tension on an element
is composed of two forces, one horizontal and the other vertical. The
first is independent of the weight of the envelope (162) and is ex-
pressed by the integral

- y° + C.

c-f.
N

I
e
jO}
&
o
<

1}
| e

If we apply this last equatioh to a vertical element of the
¢urve whose ordinate is (hl = y5) (Fig. 15), the horizontal component

t, will vanish, so that we have
a 2
t, = > (hl + y3) + C = 0.

Eliminating C from this equation we find

2 2
-y ]

)

a
‘tz— -—2- [(hl-l-

3

498. This formula renders possible an exact determination of
the tension at the low point of the envelope. Thus, putting y = b,
we find

by
tmin = - @ <}§_ + ¥;> .
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The tension on the highest element of the curve is found by
putting y = h + Vs (Fig. 15):

a
tpax = F 3 (h -hl) (h + hl+2y5).

The different signs indicate that the tensile forces act in
opposite directions.

499. " The ratio of the maximum tensicn to the minimum tension:

boax (b - hy) (h+ by + 2y5)

toin hy (hl + 2y5)

This ratio must always be greater than unity, according to
formula (495) above, so that, when Y5 = 0:

and when y5 = ®

whence
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— < 2 or

&
=

500. Equation (163) shows that once the derivative dy/dz and
the tension tZ in the z-direction are known, we can always find the

tension ty in the y-direction. Once both components are known, it is

easy to find the resultant, or the tension in the direction of the
element ds of the curve. This will be:

[2 . 42 / e _, . ds
-+ =t 1+ () - ¢, =

501%*. The derivative in this equation is determined using
formula (173), but an even simpler approach would be to eliminate
ds/dz directly with the aid of formuls (191).

Constants Cl and C, are expressed in equations (181) and (182).

Finally, we find t_using equation (497).
After all tﬁis, we get

2q (h -~ 2y) - ah (h + 2y3) + hqyg

2a (y2 - y§) - ah (h + 2y3) + 2qgh

and

.. ds_2[2a (h-2y) -ah (n+2y5) + by, ] [ -55) -ny (n)+2y5)]
)

z
dz 2 _ .2y _
L (v 3) 2h (h + 2y3
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502. If the curve is weightless, q = 0, and we have

an (b o+ 2yg) 0 LG - ) -y (B + BY5))

Gl yg) - eh (0 + 2y,)

In view of the weightlessness of the curve the value of this
expression must be independent of the ordinate. This is confirmed by

formula (189) relating hy and h.

505. These formulas may be verified in a simpler fashion.
Let us put y5 -~ O in the last equation; this means that the pressure

at the low point of the envelope 1s ZeTro.
We then have

e (y© - hgl)

2z 2(2y2—h2)'

Recalling the relation between h and hg, when both g and y5

are equal to zero (189), and eliminating h, we find
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which is also clear from formula (498), when we put y, = 0.

3

504k, In fact, if we verify (502) by eliminating h by means
of (189), we obtain

4 ds hChl )
2 qp, T\ %tz )

i.e., formula (498). Hence we see that in this instance, i.e.,
when the curve is weightless (¢ = 0), the tension is in fact inde-
pendent of y, or constant over the entire curve.
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XI. MODIFICATION OF THE COMPONENTS OF A METAL AIRSHIP

The general character of a metal aerostat will be clear from
my earlier writings (cf. "A Simple Study of the Airship" [Prostoye
ucheniye o vozdushnom korable]) and from a reading of Chapter V of
this book. But significant modifications may also be made in the
general design of a gas-filled airship. These craft are capable of
surprising variety. 1In this chapter I shall attempt to evaluate the
advantages and disadvantages of various types of components.

Various Aerostat Systems

505. This is a very elegant system (Fig. 33). One could not
possible discern its quality simply from the diagram, however, since
this drawing, like all the others in Chapter XI, is only schematic,
i.e., the scale varies in different directions and for different
components. The advantages of this system over those described
earlier are as follows.

Fig. 33 Fig. 3k
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a) Simple design of the gondola without exterior chains
of complex design.

b) Reduction of drag, since all the chains are enclosed
within the envelope.

c) Reduction in the total height of the airship.
d) Elimination of certain vibrations of the gondola.

e) Greater accessibility of the aerostat, particularly
the joints.

f) Short distance between gondola and envelope.

g) Elimination of movable parts of black heating tube,
and in general of parts transmitting vapors and gases.

h) Considerable stability of longitudinal axis of the
aerostat, as a result of prlacing the propeller at the end of the
envelope, thereby reducing the work of the regulator designed to
preserve the horizontality of the longitudinal axis (horizontal
control surface and longitudinal displacement of the gondola).

506. Calculations show that such a system is entirely real-
zable, but the opposite side of the coin must alsc be displayed, i.e.,
the reader must be acquainted with its shortcomings. These are:

a) Lower efficiency of the bropeller, since the reverse
air flow generated by the propeller will exert pressure on the en-
velope in a direction opposed to its motion; this unfavorable pres-
sure will be relatively greater than in the case of a steamship,
since in the latter instance it is possible to taper the stern of
the ship and carry the propeller out beyond it.

b) Extra load on the ends of the longitudinal girders,
making it impossible to use very powerful engines or a heavy pro-
peller. If steam engines were used as a means of' propulsion, the
steam would have to be supplied from a considerable distance, viz.,
from the middle of the gondola.

¢} The center of gravity of the gondola is too high.
d) The need for artificial tensioning of the envelope by

means of interior chains strung between the longitudinal girders,
which in turn requires heavy and complicated construction and con-
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siderable work.

507. Thus, even though this system is quite attractive and
presents some definite advantages, it still has certain shortcomings.
One of these, for instance, is the problem of tightening the chains,
without which it would be difficult to achieve stability of the
longitudinal axis. It is true, of course, that even when exterior
chains are used and the envelope is tightened by the weight of the
gondola, there are still quite a few complications to contend with.

I shall return to the tensioning system in due course.

508. The system described here can be modified in such a way
that one of the more serious flaws is eliminated, and another
partially offset, but at the expense of making the airship more com-
plicated and impairing the elegance of the design.

See Fig. 34. Here the design is a mixture of two extremes
(Figs. 1 and 33). The tops of the center chains have a fixed support
on the longitudinal axis of the envelope. The center chains, by
which the gondola is suspended, are shown slightly out of the ver-
tical owing to the action of the propeller. They must be free to
slide freely up and down through slots in the envelope base and to
deviate from the vertical position in response to the propeller
action. Each chain has its own special slot. These slots are
hermetically sealed by means of sliding plates (Fig. 35a).

In this design, the pressure on the propeller is applied more
or less to the nose of the envelope, or to some other point on the
longitudinal axis. Thus, an important advantage of the previous
system (Fig. 33) is retained, while three crucial disadvantages are
eliminated (viz., a, b, d): the propeller is placed where it
really belongs, so that it does not generate a backflow of air that
could add to the drag; the other disadvantages eliminated are the
overloading of the ends of the longitudinal girders and the impos-
sibility of utilizing powerful engines.

509. Moreover, the work done in tightening the chains would
be halved, since the middle of the envelope is tightened naturally
-- by the weight of the gondola and the loads it carries. Some of
the passengers could be housed there, and others higher up, in a
gondola directly adjacent to the envelope and suspended from the two
bottém girders, as in the previous system (Fig. 33).

The horizontal trim of the aerostat could be regulated either
manually or automatically, by displacing the center of gravity of
the bottom gondola with the aid of an inclined cable (Fig. 34). The
motion of the propeller and the variations in propeller speed will
have almost no effect on the horizontal stability of the longitudinal
axis, provided the chains are not allowed to reach the edges of the
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slots.

510. There can be no longitudinal bending of the chains, be-
cause they ride freely in the slots, but transverse bending due to

transverse oscillations of the gondola out of step with the oscilla-
tions of the envelope will be wnavoidable.

Fig. 35

This is a further disadvantage as compared with the preceding
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system: the center of gravity lies high, s0 that the distance Ye-
tween it and the metacenter will be amall¥*. Another disadvantage is
the additional complexity of the design. Fig. 35a, for instance,
shows the design of the longitudinal slots and thelr cover plates.

The chains need not be cylindrical, but may be irregular in
shape, or may even consist of elliptical links like ordinary chains;
but then special sleeves would be required, such as shown in Fig. 35b.
In any case, the top of the chain would still have to be smooth and
cylindrical.

511. This design has one further considerable advantage over
the previous one. Small changes in the volume of the envelope are
possible evel without paying out the end chains, since the chains in
the middle of the envelope are not connected to the bottom longi-
tudinal girder, SO that at this point the volume of the gas bag can
vary within a certain range.

512. The mechanism depicted in Fig. 35a and Fig. 35b can be

simplified as indicated in Fig. 35¢c and 35d.
. The last of these drawings shows a chain made up of irregular

links. The chaln passes through a short sleeve, whose length ex-
ceeds that of the link itself; finally, & gastight apron extends be-
tween the edges of the sleeve and the edges of the slot. The sleeve
and apron are held in place by & device, not shown in the diagram,
which always remains inside the envelope.

515. Were it not for the difficulty of artificially ten-
sioning the envelope by means of chains, I could recommend a system
gimpler than the preceding one. The new system, a&s is clear from an
inspection of Figs. 1 and 36, is reminiscent of our basic design
(Fig. 1), but differs in that a1l the chains can be placed in tension
artificially, when the need arises.

Here, as in the basic system (Fig. 1), the propeller develops
a couple, which tends to rotate the aerostat in the vertical plane,
raising the nose; but, as I pointed out, this couple is readily
balanced, on the basis of my calculations, by & small displacement of
the center of gravity of the gondola using the diagonal tie.

51k, A strong feature of this system is the fact that the

e

#As the bottom gondola_is placed, as it were, on the longitudinal
axis of the envelope.
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length of the exterior chains remains unchanged, despite changes in
the volume of the gas, so that each chain can consist of a single
link with hinges at the ends. Another advantage of the system is the
resulting stability of the lower gondola. Some inconvenience again
results, however, from the artificial tensioning of the envelope and
the location of the bassengers high up in the top gondola.

Were it not for the tensioning broblem, this design would be
one of the best. Accordingly, in view of the crucial importance of

associated difficulties, I shall proceed to describe and evaluate
certain approaches to this problem.

Tensioning by Pulleys

515. Let us begin with the most bPractical approach: tension-
ing of the chains by means of pulley systems. These are indicated
in Fig. 37. The force required to place any chain in tension is in-
versely proportional to the number of pulleys in the pulley system
used to provide the tension. It is advisable to keep the number of
wheels in each pulley system down to about ten, in order to avoid
exerting heavy longitudinal forces on the bottom girder. If these
forces are wnoderate, they could even contribute to the stability of
the girder. Actually, as may readily be seen from the drawing, the
two groups of longitudinal forces act in opposition to each other,
toward the middle of the girder. These forces counteract the pres-
Sure exerted by the light gas, which tends to stretch the girders.

516. The pulley wheels will have the smallest diameter when
ropes of some flexible but strong natural fiber are used as tackle.
The pure, dry hydrogen inside the envelope of the aerostat would
never harm these fibers. Tf ordinary chains are employed, the
diameters of the pulley wheels will have to be larger. As for using
wire cables, their flexibility increases as the strands become
thinner, so that in this case the size of the pulleys will depend on
the cable structure.

To turn the drum on which all the ropes are wound (Fig. 37),
& machine giving a mechanical advantage of ten will be required.

At any lower value the tensioning process would be irritatingly slow.

517. The advantages of this system of tightening the en-
velope are as follows:
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Fig. 36 Fig. 37

a) The tension applied at the different cross sections
of the envelope may be subject to some specific law; for example,
the force may be made to decrease in proportion to the cross-sec-
tional area of the envelope toward the ends.

b) The longitudinal girders, can be brought arbitrarily
close to one another -- €vVel almost to the point where the upper
girders meet the lower ones.

c) Increased stability of the lower girders, as men-
tioned earlier.

a) Arbitrarily small force required to apply the neces-
sary tension, since the force will depend on the number of pulleys
used.

The disadvantages consist in a certain added complexity and
the increased cost of the system. It is clear that the tensioning
could just as well be achieved by some other block and tackle system,
e.g., differential pulleys.

There is another tensioning system which is highly attractive
for its simplicity, but advantageous only where the maximum necessary
change in gas volume 18 extremely small (Fig. %8). The tensioning
action is concentrated at one end of the envelope. When a consider-
able change occurs in the volume of the serostat, which is sometimes
necessary in practice, the pressure On the longitudinal girders will
be so enormous as virtually to eliminate all prospects of utilizing
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this simple design. Moreover, this method of tensioning or, more ac-
curately, bringing the parts of the envelope closer together, does not
produce a contraction proportional to the size of the cross section;
on the contrary, tightening will be g minimum at the middle of the
envelope and increase toward the ends.

Fig. 38 Fig. 39

518. This last shortcoming can be eliminated by making a
slight change in the original design. Thus, in Fig. 39 the tension-
ing reaches a maximum at the center cross section of the envelope.
In general, by varying the length of the links (or rods), we can
regulate the tensioning at will.

519. This method could be utilized more readily as a supple-
ment to the system shown in Fig. 34. 1In this case the tensioning is
applied simultaneously at both ends of the envelope (Fig. 40). Here
most of the work is done naturally: by the weight of the suspended
gondola; the fraction accounted for by artificial tensioning is less
than half, and it is distributed between both ends of the aerostat.
Consequently, the pressure on the girders is reduced to no more than
one-fourth that obtained in the previous design (Fig. 39). Yet even
with this airship system (Fig. L0), we find that preference should
perhaps be given to a pulley tensioning system (Fig. 37) which can
only add to the strength of the longitudinal girders.

520. 1In fact, the principal inconvenience encountered in
applying the tension in the last three systems mentioned (Figs. 38,
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39, 40) consists in the enormous longitudinal compression experienced
by the girders, which, even though opposite in direction to the ten-
sile stress developed by the gas, may exceed the latter, which is un-
conditionally and always true at the ends of the envelope. Actually,
as the distance to the ends of the envelopes diminishes, the smaller
the gas pressure tending to put the girders in tension, whereas the
compressive stress due to the envelope tensioning forces will in-
crease, in the £irst two systems, from the right end of the envelope
to the left, where it reaches a maximum and inevitably crushes the
girders. In the last system.(Fig. %), a compressive stress will
develop at both ends and only the middle of the girders will be un-
affected by the tensioning forces.

y

Fig. Lo Fig. bl

521. Fig. 41 shows how we call arrange things SO that both
ends of the envelope are free of the longitudinal compressive
stresses and sO that these stresses increase from the ends toward
the middle, like the tensile stresses exerted by the gas pressure.
This is a highly advantageous design, as our calculations indicate,
vut it also has its Achilles heel.

The application of tension by means of a multi-block pulley
system (Fig. L1) is very convenient: it can be done from either
end of the envelope Or from any point on the side or vottom (Fig. 41).
The Fforce required to apply this tension is negligible, because of
the large number of pulleys employed, and therefore will not endanger
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the shape of the envelope, even if the pulley rope runs vertically.
The real difficulty is that this system will not stabilize the longi -
tudinal axis of the aerostat. In fact, any deviation of the axis
from the horizontal will tend to inflate one half of the enve lope
and deflate the other, the second half losing volume to match the
increase in volume of the first half (if the aerostat is not
severely tilted); the center of the 1lift force of the aerostat will
be displaced horizontally, and the inclination of the axis may grow
even worse. In order to achieve stable equilibrium both ends of the
horizontal connecting chain (Fig. 41) will have to be lengthened,
run out through the ends of the envelope, and fastened there; then
there will be no horizontal displacement of the connecting chain

and pulleys, and no displacement of the center of the 1ift force.

Fig. L2 Fig. 43

Here the tensioning and relaxation of' the ends of the longi-
tudinal chain (Fig. he) must be carried out simultaneously and ac-
cording to calculations. In general, this system is by no means as
simple as it appears at Tirst glance.

522, Nevertheless, it is worthwhile considering this system
seriously, for it makes possible the displacement of the center of
the 1ift force in the horizontal direction. The gas volume under-
goes almost no change, because ordinary pulley tensioning is not
used and the distance between the blocks remains the same as before,
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while the horizontal chain is displaced to the right or left, with
the result that the center of the 1lift force 1is displaced likewise.
The displacement of this center is a powerful means of dealing with
any tendency of the longitudinal axls of the aerostat to deviate from
the horizontal.

523. The center of the lift force can be displaced in the
design of Fig. 4o also, provided the distance between the blocks is
shortened on the right, and jncreased by the same amount on the left,
or Vvice versa.

521L. Fig. Lo shows an arrangement of the chains for dis-
placing the center of the 1ift force in a system where the envelope
is placed in tension by natural means, i.e., by using the weight of
the gondola (rig. 1).

525. Fig. 43 illustrates another notion on applying tension,
where there is no need +o fasten the connecting chain at the ends of
the envelope; this system does not stand up to criticism, however.
Actually, it is not bilateral, with the righthand chains reacting
against those on the left; here each half of the chain system re-
acts against the lower girder. The vertical component of this force
tends to lift part of the girder. This force is tremendous and
variable, so that it cannot be balanced by the constant gravity
force.

Screw Tensioning

506. The envelope could also be placed in tension by means
of screws, as shown in Fig. L. The drawbacks of this approach are:

a) high friction;

b) heavy weight of screws;

c) twisting of screws;

d) aifficulty of turning sSCrews simultaneously;

e) prevention of twisting of upper pairs of chains OT
braces.
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Devices Used in Gravity Tensioning

527. As we saw from Fig. 1, this natural method of applying
tension requires special devices to keep the longitudinal axis of
the aerostat horizontally stable. Some of these devices have al-
ready been described in my earlier writings (cf. "Simple Study of
the Airship" and "The Metal Dirigible").
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Fig. 45
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Figs. 45 or 46 illustrate in schematic form the most elegant
of these devices.

As the volume occupied by the gas increases, the chains are
drawn into the envelope simultaneously and symmetrically about the
plane of the center cross section. There is no need to worry about
the irregular expansion or integrity of the envelope, so long as the
volume does not approach the maximum, where the aerostat assumes the
shape of a surface of revolution (neither the supports of the wheels
nor their teeth are shown in the drawings; the chains are shown
smooth)

Fig. U6 Fig. 47

The chains running over the toothed wheels and the chain
portions of the vertical rods may ‘take the ordinary form, i.e.,
they may consist of an alternating series of mutually perpendicular
elliptical links (Fig. ¥7)-

Any gas leakage through the chain openings can be prevented
by means of the device depicted in Fig. 35b, except that the sleeve
will point downwards, i.e., lie outside the aerostat envelope (Fig.

7).



254

The chains must be prevented from slipping off the wheels by
means of special rollers or grooves.

It is clear from the foregoing that the mechanism is far from
being as simple as the apparent elegance of the basic design led us
to believe. However, the chain system in Fig. 46 is simpler;
simpler still is the method used to seal in the gas when smooth rod-
chains are employed (Fig. 9). 1In any case, it would be foolish to
trust to this device before it has been tested in actual practice.

528. Something more elementary is depicted in Fig. 48, which
shows the envelope from below, or a plan view of the parts of interest.
Here on emerging from the eénvelope each series of smooth chains (Fig.
9) is gripped on both sides by a simple locking device. The action
of this device makes the vertical chains integral with the lower
longitudinal girders (Fig. 48 top).

Fig. 18

Reversing the locking movement disengages the chains which
are then free to travel into and out of the envelope (Fig. U8 bottom).

529. The chains are usually locked in this way to the lower
longitudinal portion of the envelope. But if the gas 1s under high
pressure and tends to expand the envelope, which will always be ap-
parent from the visible bulge near the lower girders, the locking de-
vices (Fig. 48) are briefly operated to free the envelope from the
vertical chains. When the envelope has expanded to take on its
natural shape, which will be apparent from the absence of convexity
or concavity at the lower girders, the chains are locked again (Fig.
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48 top), so that the horizomtal stability of the longitudinal axis is
secured.

During disengagement (rig. B bottom) , an irregular expansion
of the envelope may OCCUL, i.e., there may be an unbalanced (asymmet-
rical) movement of the chains resulting in horizontal displacement of
the center of the 1ift force, so that the airship tilts. To avoid
this, the maneuver mst be executed quickly and immediately, while
the longitudinal axis is horizontal; this cam always be checked
sgainst the readings of & sensitive level.

531. For even greatber security, one Sroup of vertical chains
(Fig. 1) may be disengaged or freed pirst and, once that group has
been secured, we can proceed to the other, them vack to the first,
and so on, umtil the envelope has sufficiently expended. In this
case, the twWo parallel series of vertical chalins used to suspend the
gondola conld be particularly useful.-

When the gas pressure is low and the airship again is im
danger of losing horizontal stability, the chaims &re likewise dis-
engaged from the envelope 285 described, either successively Or, if
possible, all together, SO that the emvelope rides uwp the chains and
asgumes its normal shape.

If some Oor even al 1 of the locking devices should fail to em-
gage in the recesses in the 1inks of the yertical chains, & slight
vibration of the serostat or the general expansion or contraction of
the envelope will correct the situation. As 8 last resort, the
aprostat could safely be brought down on a flat surface im order fo
eliminate amy excess Or lack of gas pressure and restore the normal
shape of the envelope. However, €VEN i¥ the surface is not flat,
the gondola could still be correctly adjusted by meAns of a level
amd anchor chalins of different length. It should mot be forgotien
that the recesses Lie im the imtermediste, very short amd sturdy
1imks, so that the chalns tan swing without being demaged after
they have been secured [cf- (131) }-

532. Another type of nechanism for Pastening the chains im-
side the emwvelope, vhere the temsion is applied by gravity, 1S showmn
in Fig. %9. This is @ remiliar arremgement, byt it must be remembered
thet in gravity tensioning with the momgitm@jml axis horizomtal,

the stress im the cblique secondary chains serving fo secure the
principal chains is very small, im Fact virtually zero, if we 1gmore
such Tactors =5 frictiom, fthe weight of the chains, end other com=
paratively minor rorces. Im the case of artificial tensioming {Figs-
37 to 43) by means of a similar device the picture 1S emtirely differ-
ent. The purpose of the proposed mechanism is nob to apply temsion
but to secure the chains to resist the forces associated with £ilbing
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of the longitudinal axis of the envelope. Therefore, this auxiliary
systgmqqgnqbe'extremely light and cannot even be compared with the

othervise similar system employed for artificial tensioning of the
envelope. ST AR A

533. A ngtﬂ,al;tegsion;ng sygte@fccul@ also be secured in
accordance with Figs. 37 to 43, The pulley systems shown in Fig. 37
and Fig. 43 are to be preferred, The pulley system is preferable be-
cause the securing of the tensioning cablés can easily be adapted to

the degree of tension applied.

Does & Gravity TensioningVSystem Have to be Secured?

534. We have discussed certain more or lessg realizable tech-
nlques of securing'graVity'ténéioﬁing systems in order to achieve
horizgnta};stability of the longitudinal axis of the alrship; but
all these devices are excessively complicated and, consequently, the
questiofl arised’ “would 1t not be possible to dispense with securing
the”gravityxtggsioning‘syStem altogether?

Figs. 49, 50, 51 indicate that this problem is amensble to
solution. ~ - - % 7 R ' o

The tensioning and compression of the envelope occur pre-
dominantly near the center; but the further we go from the middle,
the less they become, and the shape of»the'éross;sect;on of the en-

velope increasingly approaches & circle.

535. When the aerostat is tilted, the gas no longer is able
to expand those parts of the envelope rémote from the center, so that
the center of the 1lift force is slightly displaced toward the ralsed

B

end of the aerostat, When the. aspect ratio of the aerostat is small,
stability of the‘1ongitudina1_axis'mayAbé'a¢hieVed. Ultimately,
this question can only be solved by experience with small aerostats
or with bags of the»samg;sbapetimmgrsgdf1ﬂ“§§p¢rl ‘Experimentation
will also determine the largest possible aspect ratio of an envelope
using this simple system under these or other conditions.

The deficiency in the design lies in the fact that the

volume change is less, since only the center portion of the envelope

1s drawn in, while its ghape ig less regular; moreover, the aspect
ratio too could hardly be copsiderable.  The edvantage of the system
lies 1in its simplicity and in the 4se of a shortened gondola.
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Fig. 51

Cofplete Abuchee of Tensioning

11, we can

atio of the envelope 1s sme
i.e., we can

s36. If the aspect T
dispense with tension applied from the top altogether,
do without the interior chains (Fig. 52)-
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The designm will be even simpler iff the gondola ig secured
directly to the hottom girders (rig. 53).

a) either imflate the envelope hard, but then the volgme of*
tte emvelope will o longer be free to vary, ami that ig inadmissible;

B) or redoce the aspect ratio, which camplicates the design;
: re such am airship would lack the proper speed becamse of the
Imcreased drag:

lution of am air ballonet variably inflated inside the envelope (Fig.
54), a device which seems to work excellently, since it mot only
gives horizomtal stability but also the opportunity of avoiding folds

D] ] ¥ Maintaining the
shape of the envelope would als mean the elimdination of corrugated
metal as a stroctura] material. A shedow lies over these ENCouragi ng
inferemces for the following reasoms:

@) msmmwmmemmmmmomw
coms tamt 3

b) it is alsc difficult to keep the shape comstant in that
the volume of the outer emvelope cammot be kept exzctly the same 4

c) the shape of the serostat must change in respomse to
umEvoidable tilting of the longitudinal axis of the aerostat, because
in a smooth envelope Purrows or folds will Inevitably appesar;
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or inflated form;

e) inflating the envelope will also be difficult in this
state. On completion of this operation and certain other necessary
steps, it is certain that folds and furrows will have formed in the
surface of the envelope.

Fig. 53 Fig. 54

Fig. 55 Fig. 56

538. But there is more to it than this. We still must ask
ourselves what the inner gas bag will be made of. If it is made
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of some organic material, then it will not matter that. the aerostat
itself 1s made of the same thing, since the ballonet cannot be small,
and consequently diffusion will be enormous; accordingly, some time
efter the airship has been inflated, we shall be carrying g load of .
explosives, a veritsble mine, at the very heart of the aerostat, not
to speak of the loss of gas and loss of 1ift force, all of which I
polnted out some time ago.

239. If we meke the bag of metal, it willl necessarily have
to be given an elongated shape, because its volume must vary over a
wide range, and folds must not develop in the process. In this case
the bag will have t¢ be sugpended from the upper girder (Fig. 55).

All this 1s not at all simple and glves rise to varlous com-
plicatidés. For instance, if the aerogtat is tilted the heavy gas
in the internal gas bag will be forced downward, thereby adding to
the weight of the drooping part of the airship and simultaneously
contributing to_the further departure of the longitudinal sxis of the
ship from the ho¥izontal; in order to forestall this pogsibility,
therefore, some extra device will be required o' put the envelope of
the ballonet in artificial tension. A soft bag, 1.e., & bag made of
some organic materlial, has the same disadvantage of contributing to
the tilting of the longitudinal axis of the ship. I shall not dwell
upon the need for a pump to inflate the ballonet or a motor to drive
the pump, since these are things that can be realized without much
difficulty.

540, Enough has been said to enable us to reject completely
any idea of using ballonets in metal aerostats. Their use is 1i11-
advised for the further reason that anl alrghip keeplng its volume con-
sistently the same must develop a great deal of power to forde its
way through a depser medium; whereas ap agrostat with no interior ges
bag will contract in a denfer medium, and therefore pass more easily.

owever, there is ong other means of providing for the sta-
bility of “the longitudinal axis snd at the same time dispensing with
an interior ballonet ‘and the difficulties associated with it. This
%s by mg?ns of transverse bulkheads of very light and flexible material
Fig. 56).

The advantages of this system are as follows:

a) The aerostat can be made highly elongated, which will
meke the metal envelope much easier to design, since it reduces the
folds or waves in its surface. The sharp taper will also contribute,
to a certaln extent, to the speed of the aerostat.

s v : .
C N T N e oo

b) Diffusion is eliﬁinéted;~the bulkheads may also be
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mechanically permeable to & certain extent. Only then 1t will be
necessary to provide communication between the compartments while the
airship is at its moorings, in order to restore the riormal quentities
of ges. ’

¢) By meking the bulkheads convex in & given direction by
means of ropes, we cél increase the 1ift force of either end of the
perostat and thereby exert constant control over the horizontal trim.

d) The sum of the surface ereas of the bulkheads will be
only slightly different frod the gurface area of the bellonet, where-
as thelr quality caen ve greatly inferior.

e) The perostat will contract and shrink in & denseé
medium, thus creating less dreg then an aerostat with & ballonet in-
gide. In general, the shepe of the serostat in the vertical direc-
tion is elongated end reminiscent of the shape of most fish, which
facilitates vertical motion, in particular climbing. ¢ -

- , R L S -
f) For the same reason, the transverse stress on the en-
velope will be reduced, the envelope will be stronger, or gliven the
eame strength the serostat may be larger and have a greater load-
carrying capaclty.

The extreme simplicity of the design of this aeirship obliges
us to consider i1t even more attentively. This is the system, I
might add, which proved to be the most practical in my first experi-
ments on the design of & metal envelope. Even at that early time 1t
was possible to febricate & smooth envelope with soft folds covered
by metal covers. Thus, we can minimize the size of the wetal bag
while retaining & large aspect retio, and consequently & high speed
(cf. 342 to 3L6).

Nor should we not forget that an serostat with interior bulk-
heads would be far sefer, since in the event of damage to the envelope
lesksge of ges will be restricted to one compartment. - y

The disadvaenteges of the system are as follows:

g) The weight of the bulkheads and their connecting net-
work (for rhombic network, see rfig. 56) acts on the girders and
gtiffening hoops, thereby"complicating the shape of the envelope and
_requiring special modificetions of the design of the framing. But
the larger the bulkhesds the less noticesble this particular drawback
will be; only when the number of bulkheads is large do we encounter-
another serious difficulty: the complexity and gize of thelr gurface
area. -
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b) Another disadvantage resides in the fact that soft en-
velopes readily yield under the pressure exerted by the gas, and con-
Sequently contribute to g constant, though slight oscillation of the
longitudinal axis and harmful deformations of the metal envelope.

In order to ensure safety in the event of damage to the metal
envelope, it would be wise to make the interior of the envelope con-
sist entirely of cells each, say, 1 or 8 cubic meters in volume.
These partitions, both longitudinal ang transverse, must, of course,
also be made of soft material. This system would more or less
nullify all the above shortcomings, not to mention the fact that it
also offers maximum safety. :

But unfortunately, this is not the case. 1In fact, stability
is only achieved if the longitudinal partitions are stretched (and
even that is not enough). But they cannot bve stretched, since the
general shape of the envelope varies constantly and for that reason
the longitudinal partitions would either tear or shrivel up in
response to volume changes; neither prospect is tolerable, so that
the entire system is g dubious one at best#,

Conclusions Concerning the Above Designs

541%.  Only extensive and detailed calculations, and even
more important, experience can definitively decide which of the sys-
tems described is best and most practical, and under what circum-

Névertheless, turning to the metal airship in its pure form
(i.e., with no bulkheads made of organic material), we cannot re-
frain from suggesting to the reader one more airship design deriving
from those already described (Figs. 3L, 35, 37, 50). Our intention
is to choose the best design. It is Preferable that the envelope be
tensioned naturally -- by the weight of the gondola, and that the

the aerostat; but this must not involve moving the propeller to the
end of the envelope. T accept all of these points (Fig. 34) in my
new design. I shall also rely on the best method available for se-
curing the chains by means of pulleys (Fig. 37). I should also remind
the reader of the system shown in Fig. 50, part of which T shall
introduce into the new design, since the ends of the envelope will
not be subjected to tension to any great extent, so that they will
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be close to circular in CToss section. I shall minimize the number
of vertical chains in order to achieve maximum simplicity of design.
Because of the small number of chains and slots, T shall adopt the
most refined method of closing the slots (Fig. 35). 1In order to
reduce gondola weight and further simplify the design, I shall con-
centrate the principal loads on the vertical chains: these loads
are the motors, fuel supplies and provisions, equipment carried on
board, etc. The cabins or staterooms must be close to the principal
chains. The chains may be replaced by solid cylindrical rods or, at
least, the part of the chain that slides through the envelope may be
rigid if desired. For safety reasons, this part may consist of a |
cylindrical tube with a metal cable running inside. The metal cable
will save the day if the tube should snap. The chain connections,
controls, etc., will all be concentrated in the gondola. The cat-
walk under the lower part of the envelope will be open, light, and
designed merely to facilitate inspection of the joints in the en-
velope, and the chains, rods, and tubes. Tn case of need, the pro-
peller could be raised so that the blades do not extend beyond the
gondola floor as they rotate.
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XII. DESIGN OF CERTAIN COMPONENTS OF A PARABOLIC
AFROSTAT, AND THEIR WEIGHT*

EER Center of WindrPressure on Envelope

542. 1In general, the top and bottom longitudinal girders are
unequal. T shall assume that the longitudinel axis is & straight
line passing through the ends of the envelope or the ends of the
girders (Fig. 57). . . , ,

When the aercstat is in independent flight, the air stream
will exert a certaln pressure on the envelope, the location of the
center of pressure varylng with the circumstsnces. The exact loce-
ticn will depend on the ratio of the lengths of the longitudinal
girders 6r on the ratioc of their rises hl’and h2. For instance, in

Fig. 11 the bottom diagram depicts an envelope in which the center of
pressure lles close to the center of the 1lift force developed by the

gas, whereas in the middle diagram the center of pressure lies lower,
end in the top diagram higher than this point.

543, When the aerostat 1s in independent uniform motion, the
thrust of the rotating propeller will be equal to the pressure of
the air streem or the wind pressure on the surface of the alrship.

If the propeller is mounted on s relatively stable gondola, then the
center of pressure will coincide with the geometrical center of the
propeller or 1ts exis. Such a system is, in fact, depicted in Fig.
1. But if we take & better system (Fig. 33, Fig. 34), the center of
thrust will lie close to the longitudinal exis of the envelope. It
should actually coincide with the center of wind pressure on the
envelope. Equilibrium requires the coincidence of these two centers,

*To simplify the calculations, in this chapter I assume the shape of
the aerostat to be parabolic, even though a different shape would be
more suitable in relation to the corrugation of the surfesce. In any
event, the latter would be fairly close to a parasbols, and the
calculatlions in this chapter are also approximately appliceble to
the shape optimizing the mode of extension of = corrugated surface.



265

but, in general, they will form a couple, which will tend to tilt the
gerostat, the more strongly the greater the distance between them.
sily, This couple cen always be balanced by displacing the
center of gravity of the serostat (for instance, by moving the
gondola to the right or left) or the center of the 11ft force (Fig.
Lp), but even so it 1s better that the couple be a8 close to zero as
possible. Actually, when the center of thrust 1ies sbove the center
of pressure of the air stream, the envelope chould be iade more cofiz
vex on top (Fig. 11, bottpm,diagram).' Note that evenfwhéh(phé;éenﬁ§i
of thrust end the center of wind pressure coincide, eQuilibi'ﬁm" -
established only when thergerostat is in uniform horizontalymption

or when the acceleration,'whether'poéltive or negetive, is’ small.

ok D T LOUXS

Fig. 5

Now if the propeller_werehsuddenlyAiy spin rapldly, in the absence of
special countermeasures, the airship’ would stert to "peck" [pitch]
owing to the fact that the center of inertis of the ship does not
normslly coinclde with the center of wind pressure. Another drawback
of this approach to the problem of bringing the centers of pressuré
{into coincidence is thet, as the ghape of the envelope undergoes dis-
tortion, the resistance tprits_mgtionﬂingrqases, and it becomes more
difficult to design é'su;ﬁablefenvélﬁﬁég " In & good serostat system,
where the center of Pfééégférohqﬁhéfpfdﬁé1lefhis.tfaﬁéﬁittég£§~th¢j_
longitudinal exis, there is ho need for such iigtortion (Fig. 3W) .
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Mean Position of Center of Pressure of Air Stream
on Envelope. Length of the Girders

545. When the envelope is inflated to half capacity, the
length of the longitudinal girders must be such that the longitudinal
axis cuts the envelope, or the vertical distance between the highest
and lowest points of the envelope, exactly in two. Then the center
of pressure of the air stream will lie close to the axis.

54. For a parabolic aerostat (414), we have, approximately:

2
ey - omy (10 20 2)
Sl—— Xl +3 '—2' ’
*1

where 231 is the length of the upper arc, and 2x1 is the length of

the axis. For the lower arc we have:

).

2s,. = 2x (} + Ei .
2 1 3

Hho Inffo

From a drawing of the principal cross section of the envelope
inflated to half capacity (see, e.g., Fig. 16), we can find the
maximum height of the envelope. Dividing this by two, we find h2.

Now subtracting the depth of the furrow (or longitudinal depression
in the top of the envelope), we find hl. Now, once the length of the

aerostat, or the length 2xl of the axis, is known, we have all the



inPormation we need in order to determine the arc lengths 251 and 232
from the availsble Formmlas.

Eguation of the Lomgitudinal Cirders of 3
Detlated Metal Aerostat

and

since the lengths s amd N suffer mo chamge im the deflation Proc-
ess; ounly the rises h} and hﬂs apd the axis ng change. These three

guentities are unknovn and heve to ve determimed. However, we have
available a third egmatiom: -

kS . P‘:Q(hj‘l'hm)’
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since the péfimeter'ﬁ’of'the”center”crOSS'section through the en-
velope will be the same before and after deflation. )

549. From equations (547), we find on subtracting:

250. Now, eliminating X, from the first formula in (547),
we have o

2
=2.2. b 2 Blsoe)
1 3 2/52-51 D hh-h.j

gince, on the basis of (548);

hi - h; = (h4 + h3) (hh - h3);= é} (Ph - h3).

551. With the aid of formula

(548), we now eliminate hu fror
this equation; we then find
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Hence, for h3 or the upper risge of the deflsted bag, we get

[P '651 (52'51)] [2P + (52' 5]_)

P[P = 351 (52 '51)] /
h3 - { 2 2 g
[s? - 35, (85 = 81)°]

2[2P + (32' 51) ]

er rise, by gubstituting 32 for Sl’ and

we obtaln hh; i.e., the low

vice versa.
552, Since (92 - 51)2 1g & quantity of the gecond order of

smallness, on discerding it we get ]
N ’:j” . -,- i - “r. -

2D TEDT ToE
[1-3-— 2 1)]2

in place of the last formule.

553. "Now, aenoﬂng - (—-——-———) by k, we find

\-'{CVN"T e

1 -2k 7.

“‘h3 (l-k)[lijl--(—;—_—;;—],
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but since (1 - k)2 =1-2k+ K° and since (ke) is a small quantity
of second order, we discard it and obtain

B TETEE SRR TE LY
55k, Replacing 1 by s, _, and vice versa, we find
2 fes - 2(0))

555. 1In the last two equations, we find the value of 52 - s1
from (5h49) as:

The arcs 5, and 8, are known from equations (546); the perimeter

P may be determined from Fig. 16 or from the corresponding table. fThe
rest is known (Fig. 57).

55. Once the rises h5 and hh are known, we can also write the

equation of the deflated envelope or, more accurately, the equation of
the top and bottom girders, viz.:
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2 2
SO RFRNGE 5

where x and y are coordinates, and 2x2 is a new axis only slightly

shorter than the previous 2x1. It can be determined readily from

equation (547), from which we find

2 2 2
55T- x2=v/sl-3--h3.

Length of Stiffening Hoops and Inclination of
Girders to longitudinal Axis

558. Once we have equation (556) for the girders, we also
have the length of the stiffening hoops. 1In the first equation, ¥
denotes the length of a hoop of the deflated envelope from the axis
to the upper girder, and in the second equation it has the same
significance in relation to the bottom girder; x is the distance from
the center of the envelope to the hoop. The length from one edge of
the envelope to the other, or the length of half a hoop, will be
[cf. (5%6)]

oy e (%) =m (-5 )= 2(- 5D,

where y and y, axe the radii of the envelopes inflated to form a
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surface of revolution; p 1s the perimenter of the center cross section;
X, 15 the length of the semi-axis of the deflated envelope, close to

X, end defined by formula (557).

559. The inclinatlon of the longltudinal girders to the axis
may be checked from the value of the derlvatlves (556):

Cross-Sectional Area of Longitudinael Girders end
Their Weight in the Cese of a Variaeble Cross

Section (Strength of Envelope Neglected;

Gravity end Lift Force Moments Equal

560. Chapters IX and X contaln all the date needed to solve
the problem of the cross-sectional area of the longitudinal girders
for a gilven materisl, with the strength of the envelope neglected. We
chall now consider the simplest case (U69), where the gravity moment
snd the moment of the lift force are equal at every cross section
through the aerostat, so that, being opposed, they cancel each other
out. Then only the gas pressure will act on the girders.

On the besis of formulas (456) and (468), we find thet the

top gilrders will be acted upon by & force
meye (yx + ¥ =),
3 1y

and the bottom girders by a force
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ney” (¥ + ¥y - -]L;- ¥)

561. Do not forget that the longitudinal tepsion acting on
the corrugated gurface will have an jmportant effect on the gtresses
in the girders gince it acts in the opposite airection and will
therefore tend to reduce the girder stresses. The greater this
longitudinal tension, the amaller the force tending to stretch the
glrders. In these calculations we shall neglect the elasticity of
the corrugated gurface of the envelope, and assume the force exerted
by the gases acts excluegively on the 1ongitudinal girders. -

562. The ultimate strength of the material w111 be denoted
by K, end the permissiblé gtress by Kd' The factor of safety will

then bve é? = n. Now, for +he purpose of determining the cross=-sec-
a
tional aree of the top and bottom girders we have the formulas

o 1 n
ﬂay2<y3+yl+ T;@- ey
and

ﬂaf(y3+yl-%y>- %

563} e we'put ¥ =¥y we obtainﬂihé meximum ereas of the

center cross gectlon through the girders; to be precise:

IR P R
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5ok, The veight of top girders of variable cross sectiom will
be expressed by the integral

mga-%j!‘yg(%«s-yli-%y)d&

And the weight of the bottom girders by




215

n 2
2my a + . —j‘ ax.
7g> (93 v) g 47

Since ¥ = ¥4 (1 - i;)’ we have, on integrating,
1

L
jy%x:yix(l-%-i—%q— l;——%>.

But if x = X4, then

8 2
I?zdx:];yl'xly

and the total weight of the girders will be

P

32 D . 2
=X 743 (v + vy) YV1%1-

567. This means that the weight of the girders inmcreases with
the pressure y5 at the lowest point of the envelope- The pressure y5

1
3

the weight of the girders by less than y L.€4, by a quite small

CRES

fraction of the determined value.
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varies constantly as the filling gas expands or contracts. The safety
valve may be set 1in such a way, for instance, that the Pressure y3 at

the lowest point can not exceed yl. At that Pressure, even the center
cross section will expand almost to a fyui1 circle, as we shall see
later on from tebles. But the valve may be set to an even lower pres-
sure, say 1/2 yl, 80 that the cross section is gtill not very full.

If we put ys =¥, the cross-sectional ares will be (cf. the

above formulas):

for the top girders
i
Tay2 (2}’1 + Uhy) - =)
K
and for the bottom girders

n
May= (2y, - 1/ y) =
568. The meximum center section will be
n n
9/ 4 may? 2 and 7/k nafl 1.

569. 1In geéneral, the sum of the top and bottom cross sections
wlll be

no o2
lmayl'f'y,




and the maximum of this sum will be

n
570. bra - s . y51
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571. The total weight of the girders is found as [cf. (566)1]:

6k 1 W?xl'

s vy &
5 X e

X .
572. Putting )-;l = A, we now find
1

6_}.#-‘.2.. a;n')\h'
5 TV

i.e., for a constent aspect ratio A of the envelope, the weight of
the girders will be proportional to the fourth power of the dlmen-
sion yl of the airship, while the 1lift force will increase in pro-

portion to the third power. This clearly indicates that the size of

the serostat 1s limited.
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Weight of Longitudinal Girders in the Case
of a Constant Cross Section

575. 1In view of the fact that in certain circumstances the
aerostat may tilt, so that the pressure at the higher end increases
drastically, while a catwalk, the weight of which cannot be balanced
by the gas pressure, is slung beneath the bottom girders, we would do
well to assume that the girder cross section is constant, irrespective
of how close parts of the girder may be to the ends of the envelope
and the corresponding maximum gas pressure. Then, on the basis of
formulas (563), we arrive at the following expression Tor the total
weight of all the girders:

21 25 . E :

where (251 + 252) is the perimeter of the principal longitudinal sec-
tion through the envelope.

574, We may assume approximately, cf. (L1h):

-/

Hhols%o

in which case the weight of the girders will be
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by ay”

n 2
A g Uty (35

Hol=To
\/

575. ©Still less accurately:

n
hﬁyga "X . xlyi_(y3 * yi).

576. Putting ¥y = ¥y, we have

577. Formulas (575) and (566) provide us with an opportunity
to Tind out by how many times the weight of girders of constant cross
section will exceed the weight of girders of variable thickness. By
dividing the first formula by the second, we obtain then15/8 or 1—7/8.
Clearly, then, the weight of the girders of variable cross section is
almost half that of the girders of constant cross section.

Weight of gtiffening HOOPS of Constant Cross Secticn
(Strength of Fnvelope Neglected)

578. If we assume that the corrugated aerostat envelope 1S
very thin and that its stiffness can be neglected in our calculations,
the longitudinal gas pressure must be resisted exclusively by the
hoops. We shall proceed to determine the weight of hoops of con-
stant thickness for this case.
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From Chepter X [(486) f£f.], we draw the following conclusions
concerning the trensverse stresses on the envelope.

a) The maximm stress at any cross section occurs at the
highest point of that cross section.

b) In the Principal cross section, the stresses are greater
than in any other section.

¢) We may conclude from the first two points that the
maximum transverse stresses in a glven envelope occcur at the highest
point of the center cross section.

This stress is expressed exactly by the formuls

t, = %(h-hl) (h+ by + 2y;)

[cf. Fig. 15 and formulas (498) 1.

579. Here the letter h denotes the height of the envelope,
or the vertical dilstance between the highest and lowest points of the

envelope (Fig. 15).

580. Assuming that this 1s the maximum stress for all the
hoops, we must alsc assume that their cross~sectional ares is the
same, namely:

a 1
E(h - hl) ( h +, hl + 2y3) . ‘k-'

Here the stress is calculated per unit width of & strip of the
cross section. The formula therefore expresses the crossg-sectional
area of hoops spaced unit distance apart. Clearly, the total weight

T

- 9
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of the hoops will be independent of how closely they are gpaced Over
the Tength of the envelope, since the crose-sectional area of each-
hoop will diminish proportionately as the number of hoops stiffening

the envelope increases.

81, If we take a trensverse strip of the envelope of unit
width and unit length, then the weight of the hoop per unit area of
the envelope may be expressed [cf. (580)1] as:

a n
7’0' E(h-hl) (h+ h1+2y5) 'I—{',

where 7, ig the density of the material constituting the hoops.

532. Obviously, the welght of allithe hoops may be expressed
as the product of this quantlty end the total surface area 2F1 of
the envelope [cf. (386) ]; thus, we have

i .y%)_n_
23

4 ’ 2
E; M7 2 (h - hl) (h + hy + 2y5) % <} + =

583. This formula expresses with a high degree of accuracy

the weight of hoops of constant cross gsection. But the weight of the

hoops may be expressed in gtill another wey, though less exactly.
-~The agverage presgiire’ per unit area of any cYoss gection is

(y5 + yl) a [cf- (486)]. The pressure on the hoop per unit width at

the center Cross gection of the envelope is a (y3J+ ylj yl. The cross-

sectional area is

- Sy : I LT
ay. (yx + v T
1 W3 TV K



282

58h. Accordingly, the weight of the complete set of hoops
(582) will be:

3 o

Hence we see that the weight of the hoops increases in propor-
tion_to the fourth power of the dimension ¥y of the airship (if its
shape varies in the same way).

The Weight of Stiffening Hoops of Variable Cross
Section (Strength of Envelope Neglected)

586. 1In view of the Pact that the envelope offers excellent
resistance to the pressure exerted by the gas in the transverse direc-
tion -- in the direction of the hoops, we may also assume that the
cross section of the hoops varies in accordance with the true gas
pressure.

The average pressure [cf. (486) and later] per unit surface
area of anmy cross section is a (y3 + yl); the pressure acting on a

boop per unit width will be a (ys + yi) 2y; the average tension on



283

this hoop al top or hottom will be a (yrj_ + yl) y. The cross-section-

al areas will he
n

B7. The differential of the total weight of the hoops will
be approximately:

m

a (y5 ¥ ¥ omyy x-

Consequently, the weight of the hoops will be
n
enya - g (95 + 7 ° Kyzﬁx

588. We have arrived at a zormmla identical with that (566)
for the weight of the girders. Clearly, the total weight of the
hoops may be expressed by exactly the same rormula as used for the
weight of the girders (566), i.e.,

32 n __ - 2

r = amdi]-L-k we have
y}"yl Y]_— > d
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64 n N
i; ;; nyoaxyl.

589. I have assumed here that the stress on a given hoop is
constant and equal to the average streds, but in fact the maximum
stress 1s only slightly different from the minimum stress. From

Tormula (468), we find this stress ratioc for y3 =¥y

<} + §§Z:> . (} - §¥1:> .

Clearly, the smaller the radius Y of the cross section, the
closer this ratio will be to unity. For the principal cross section,
the ratio will be greatest, but even here it only ‘amounts to 9/7.
Accordingly, the maximum stress will be only Q/? greater than the
average stress, and the minimum stress will be smaller by the same
factor. Accordingly, the top of each hoop may be made L/? thicker
than the bottom.

590. However, in view of the use of simplified formulas for
the gas pressure in calculating the hoop stresses, the true stress
will be at least 5/4 times greater than indicated here, so that there
will be no particular need to make each hoop of variable thickness.

Formulas (488) and (498) serve as a means of checking this.

591. Formulas (584) and (588) enable us to determine by how
many times the weight of hoops of constant cross section will exceed
the weight of hoops of variable thickness. Neglecting the factor

<ﬁ + %; . 7%:) in the first formula, since it 1s close to unity, and
S — T T
X7 B 3 -
dividing through by the second formula, we arrive at a figure of 5/&.
Consequently, using a constant cross section increases the weight of
the hoops by only L/h the weight of the hoops of variable cross section.
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Strength of Envelope: Trensverse and Longitudinal
' Strength. wWeight of Envelope

592. The ultimete transverse strength of the envelope over an
intervel dx is approximately equal to K ° 5env . dx; the average ten-

sion on the envelope due to the gas pressure may be expressed (586)
as:

a (yz + vp) yax.

The ratio of the resistance of the material to the applied
force will be :

5 K
env

- - = .
eyt y)y

Clearly, then, the fector n is inversely proportional to the
diemeter y of the cross section. Hence, when the factor n is ade-
guate at +he center cross section, it will a forteriori be adequate
at smaller cross sections (given, of course, &n envelope of constant
thickness Sen )

59%. From this last formula, we have

Bopy = & Yy oz
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i.e., in the case of a variable envelope cross section the enve lope
thickness will be directly proportiomal to the diameter 2y of the
cross section of a given airship.

59%. If we assume the envelope thickmess to be constant, then
we must put y = ¥y in the formula: we then Tind:

=a(y, +v,) =
eny 3F70 9" ¢ -

595. Making the further assumption that y5

= yl, we have:

) = Qa,yg

n
env 1 K

7

the thickmess of the zerostat envelope increases in proportion

€.,
the square of its vertical dimensiom y,-

i.
to

i

596. The weight of an envelope of comstant thickmess , with an
adequate safety factor m in the transverse direction, is obtained
when the surface area of the envelope is multiplied by the thickness

& and the density y .
env env

Assuming the envelope to have the shape of a surface of revolu-
tion, we find the total surface area from the Tormula (386):

EF:L:%WILXLCL*"% : j‘%)
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But the inflated envelope is covered with corrugations, SO
that we must introduce a correction factor into formula (386); more-
over, part of the envelope surface overlaps at the seams, while, on
the other hand, part is replaced by the fairly broad stiffening hoops.
We can bake all these corrections into account by means of a single
multiplier T, which is only slightly greater than unity and may even
be equal to unity.

in fact, on the vasis of the preceding formula and formula
(594), the weight of the envelope will be found to be:

8 2 2
?; TT’n')ienvaxlyl ) (y5 + y1) <} * ?; )

ol S to
_/
=B

X
1
597. Putting ¥, =7 and — = A, we find
> 1 Y1
16 L ( 2 > n
3 ﬂﬂyenvakyl 1+ - 2 T

Accordingly, the weight of an envelope of constant thickness,
1ike that of the hoops, 1§ progortional to the fourth powexr of the
dimensions of an airship, assuming the shape varies in a similar man-

ner.

Moreover, on comparing formulas (596) and (58k4), we see that
the weight of the hoops and the weight of the envelope are almost the

same, since the ratio N is very close to unity.

508. From the standpoint of adequate transverse strength, the
weight of an envelope of variable thickness is clearly expressed by
The same formula as the weight of hoops of variable cross section (588

or the weight of girders of variable thickness .
We must now consider the question: will an envelope designed
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for adequate transverse resistance be sufficiently strong in the
longitudinal direction as well?

The gas pressure on that Cross section would be:

a (y3 + yl) (my®).

The average safety factor for the cross section would there-
fore be:

2 6EI'IV'K

n =

i.e., twice as great in the longitudinal as in the transverse direc-
tion [cf. (592)].

thickness and the strength of the material constituting the envelope,
but also on the shape of the corrugations, their amplitude, slope,
and in general on the degree of tension, which will in turn depend on
the extent to which the shape of the cross section departs from the
mathematical curve defined in Chapter VI under the assumption of
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near-zero longitudinal tension. This is & highly involved question
and the formulas (332) to (341) in Chapter VII will prove very useful
in clarifying it.

Nevertheless it seems to me that this tension will not be less
than half that for a smooth envelope, under favorable conditions, SO
that the strength in the longitudinal direction will not be less
than the strength in the transverse direction.

600. We can now summarize our calculations on the weight of
the structural components of the aerostat and the envelope.

a) The weight of an envelope of constant thickness is ex-
pressed by the same formula as used for the weight of hoops of
constant cross section (584) and (596).

b) The same applies to the weight of an envelope and
hoops of variable cross cection (606) with adequate strength.

c) These weights ("," above) are likewise severally
equal to the weight of girders of variable thickness (583) -

d) The weight of hoops OT the weight of an envelope of
constant thickness is 1-1/M times greater than the corresponding
weight for variable thickness.

e) The weight of girders with a constant cross—sectional
area is 1-7/8 times greater than the corresponding weight when the
thickness diminishes toward the ends of the envelope.

f) An envelope whose strength 1s satisfactory in the
transverse direction will also, under favorable conditions, be suffi-
ciently strong in the longitudinal direction as well.

g) The weight of the envelope and of the structural com-
ponents of an aerostat whose shape varies in a similar manner will
increase in proportion to the fourth power of the linear dimensions
of the aerostat. But if the height of the envelope and its length
increase disproportionately, the increase in weight will be propor-

tional to the length 2x end the cube of the height (2y1)3, and will,
in general, be proportional to X172f

h) Denoting the weight of hoops of variable thickness by
¢ and neglecting the strength of the metal envelope, Wwe £ind that the
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weight of the hoops of variable Cross section plus the weight of
girders of variable Cross section is 2G.

i) The weight of hoops of constant cross section and
girders of constant Cross section will be:

5/% G + 15/8 ¢ = 25/8 @,

(i.e., 1-9/16 times greater than before "h"),

j) The weight of hoops of constant cross section and gird-
ers of variable cross section will be:

5/% G+ 6= 9/kq,

(i.e., only 9/8 times greater than in case "n").

quirement of adequate strength will bve G, and the weight of an en-
velope of constant thickness will be 5/4 G.

1)  The weight of an envelope of cross section and girders
of variable cross section (without hoops) will be

5/4G+G=9/4G=21/1+G.

m) The weight of an envelope of constant cross section
with hoops of constant Cross section and girders of variable cross
section will be:
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5/4 G+ 5/h G+ 6 =31/2q.

Of course, the strength of an envelope of this type will be
twice that of an envelope corresponding to case "h"; moreover, this
type of aerostat will be safe to operate even if heavily tilted.
Therefore, reducing the weight of the envelope and the structural
components by half, we obtain as the sum of the weights only

/4G =13/ka.

n) Thus, dropping G, we obtain the following sequence of
coefficients expressing the weight of the components and the envelope:

1; 2; 3 V8;21Vh;lZVh;QZUh;32V2;15ﬂL

Weight of Envelope of Constant Thickness
when its Strength is Neglected

601. In this case, the weight of the envelope may be ex-
pressed by the formula

J

2Fﬂyenv ) 8env

where 2F is the surface area of the inflsated envelope determined from
formula (386):
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>
oF = 8/3 Ty x, (} =

HholSto
—/

The remaining quantities are, respectively: the area coeffi-
cient M, slightly greater than unity, the density 7 of the ma-
, env

terial, and the thickness aenv of the material.

Weight of Cylindrical Longitudinal Strips Forming the
Top and Bottom of the Envelope for the
Case of Constant Width

602. The sum of the weights of two almost identical smooth
rectangular longitudinal strips will be:

[Qs =] 7q (251 + 252) bsbs’

where Vg is the density of the material constituting the strip; s,
and s, are the lengths of the strips; bs ig the width of the strip;
&y its thickness.

603. We may assume that approximately 2s, + 2s, = hxl, s0

that the weight of the strip will be uysxlbsas.

If the width of the strip is assumed equal to the width of the
gondola and proportional to the vertical dimensions of the aerostat
Eyl, i.e., bs = yl/m, then the weight of the strips may be expressed

by the formula
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where m = const.
We may also assume the weight of the strips to be equal to a

certain fraction of the weight of the envelope plus the hoops.

Weight of Main Vertical Rod-Chains

Gol. The weight of the gondola and its entire contents
usually comprises only half the total 1lift force of the aerostat.
Therefore, assuming that the chains and rods are vertical and that the
tension on these members is half the total 1ift force, we can COI-

struct the equation:

1 K
2 al = n Frod'

Here a is the difference between the densities of the external
and internal gases; U ig the gas volume Or the volume of the gas
cell; K is the ultimate strength of the chain material; n is the
safety factor assigned to the chains; Frod iz the sum of the areas

of normel cross sections through the rods, chains, or cables.
605. Using 7.4 to denote the density of the material, and
t to denote the greatest vertical distance between the highest

rod

point of the envelope and the floor of the gondola, we find that the
weight of these rods and supports cannot exceed y_ .F 1 . In-
rod rod rod

cluding the parabolic chains in the category of vertical chains, we
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may assume, on the basis of th

is and previous formulas, that the
total weight will be roughly:

n
[Qrod =] oK al 7rodtrod'

Weight of Passengers and Motors

606.

Let the weight of the bassengers be a certain fraction
kp of the 1if

t force aU; then their weight may be expressed by the

formula

=] x_ aU.
la, =]k =

Now let the weight of the motors also be a certain fraction
k, of the 1ift force; their weight will then be

[Qm =] k, aU.

Weight of Gondola, Control Surfaces, and Propellers

607. Since the weight of the gondola is proportional to the
weight of the bassengers, motors, etc., i.e., proporticnal to the
lift force, we may assume the weight of the gondola to be
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[Qg =] kga’UJ

where kg is a certain fraction of the 1lift force assigned to the
gondola.

608. Assuming the aerostat to have a constant shape, we may
make the further assumption, as in naval architecture, that the sur-
face of the control surfaces and propellers separately will consti-
tute a certain fraction of the envelope Cross section or, in other
words, that their surface area will be proportional to the surface
area of the ship.

If the speed of an aerostat varying in this manner must be
constant, then the pressure on the control surfaces and propeller
will also be proportional to the surface area of the ship. The mo-
ment of this pressure will then be proportional to the volume. If
the average thickness of the control surfaces, etc., is proportional
to the size of the ship, then the moment of resistance of these '
parts, Jjust like the moment of the pressure exerted on them by the
air stream, will be proportional to the cube of the linear dimen-’
sions of the sHip or its volume. Thus, the moment of resistance
will correspond to the moment of pressure, 850 that the weight of the
control surfaces, propellers, etc., «ill be proportional to the
volume and may be expressed by the formula

[Q—y = ] kyaU:

where ky is a certain fraction of the 1lift force assigned to the

control surfaces.

609. We have assumed that the thrust developed by the motors
is proportional to the 1ift force of the ship, i.e., proportional to
the cube of the ship's dimensions. Clearly, then, the pressure on
the control surfaces and propellers will increase more rapidly than
the square of the ship's dimensions OT its surface area. Consequently,
under conditions such that the speed increases with the size of the
ship, the weight of the control surfaces must increase faster than the
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cube of its dimensions. TIn order to avoid this, it will be necessary
for the control surfaces to be made of stronger and lighter material,
of aluminum or steel tubes for instance; Tinally, several propellers
may be required. In general, by exercising a certain amount of in-
genuity it should be possible to breserve the situation in which the
weight of the control surfaces and propellers is pProportional to the
Lift force.

Black Inner Tube for Heating the Light Gas

610. A black metal tube placed inside the envelope (Fig. 1)
for the purpose of heating the hydrogen should be made of such ma-
terial and so designed as not to burn through and to sustain a tem-
perature difference between the external air and the internal gas,
which is the greater the larger the ship. The average thickness of
the sheet metal of which the tube is made may be assumed to be con-
stant or to increase only slightly with the size of the ship; the
surface area of the tube may be assumed to be proportional to the
surface area or, at least, to the volume of the aerostat. Clearly,
then, the weight of the tubes can not increase faster than the 1ift
force of the ship, so that we may generously assume for the weight
of the heating tubes: :

|:Q‘tu,be =] ktubeaU'

Of course, the thickness of the material forming a given tube
must correspond with the temperature of its parts.

At the point where the hot combustion products are first ad-
mitted, the tube can be made heavier, but further along the thickness
can be reduced. b B

~ 611. We still have the problem of determining the weight of
the couplings, valves, sheathing for the gondola, regulators, pulleys,
~anchors, catwalk, pas

i 7 sengers seats, and of a host of fittings, me-
chanisms, and miscellaneols” items of comfort and necessity. The weight
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of the fuel has still to be taken into account in the calculations,
bearing in mind the gas motors that require a supply of gas from the
aerostat envelope.

Suppose that the weight of all the items not yet taken into
account in the calculations is proportional to the total 1lift force;
then this weight will be

where kmisc is some fraction of the lift force corresponding to the

miscellaneous equipment and supplies.

612. The term U, i.e., the volume of the light gas, appears
in the preceding formulas. From (389), we know that

2u, = 16/15 ny%xl.

But, on the one hand, this is the volume of an serostat in-
flated to the shape of a body of revolution, i.€., it is extremely
large; while, on the other hand, it is small, since it must be in-
creased by the intermediate elongated cylinder (Figs. 1 and 3)-

In general, in view of the fact that the volume of the addi-
tional cylinder is proportional to the volume of the aerostat, we
may assume for the total volume

2
U= 2Uuk, = 16/15 kY %5

where Kk is close to unity.
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XIII. CAICUIATION OF THE HEIGHT OF THE SHELL OF A BALLOON

A few Preliminary words on the significance of the dimensions
of & balloon (aerostat) are not out of place here,

The larger the dimensions, the more solid the construction of
the metal shell and the more under control it is. A dirigible needs
to be of large size for the gain from air support to exceed that
from sea support. Even Giffard (1825-1882) understood very well the
importance of large dimensions. Although he wag a practical worker
who spent millions on his steam engines, pumps, and balloons, he

3
planned to build a balloon of displacement 220 000 m” .
He is not to be considered ignorant or a dreamer in this matter;

it was not by luck he made an anchored balloon of 25 000 m . He was
interested in air flight from his youth; his guided balloons are
known to all and constituted an epoch in aeronautics. Blindness

and death have taken this ingenious man from us; he left all his
estate to the poor of Paris and to learned societies to continue

his work on guided balloons. What might have been if this genius
had arisen and hag used for his plans the Present-day power of
technology, our present Ievasseur engines, which give something

like a horsepower per kilogram weight! His planned balloon had s

metal shells of aircraft; they will be even larger than he thought,

Small balloons are unsuitable not only in respect of material;
they would have metal shells of inadequate strength,

HOWever, they can act as g means of studying ways of making
such shells; they will also serve asg an intermediate step to the
vast aircraft, just as a small and weak child grows into a useful
worker,

613. We have available data for calculating the largest
dimensions of the shell with respect to height. The Principal basis
for this is the weight of the shell and of its massive parts,

From (600) we see that this weight can vary greatly. The
following are some cases of practical or theoretical significance,
These will be used 1in deriving the equations defining the height,

a) A shell of variable thickness, but so designed as to sus-
tain the lengthwise and transverse pressures of the gases and other
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disruptive forces. We neglect the weight and resistance of the spars
and struts.

We take the weight of the shell a8 G [see (600), which 1s 8180
needed later].

b) The same, but of constant thickness, which is governed only
by the size of the vessel. The weight is 5G/b.

c) The same (shell of constant thickness for & given balloon);
we neglect the resistance of the spars and struts, but the weight of
these 1is proportional to the 1lift of the vessel, which means that
their thickness in all directions is proportional to the dimensions
of the vessel. The weight of the shell is then

s/ G+ alk
5,0

in which k o is the part of the 1ift all taken up by the spars and
8
2
struts.

d) Iongitudinal spars of variable thickness and ghell of
variable thickness share equally the resistance to lengthwise forces.
There are no struts, which are replaced by the shell. The spars
have half weight (G/z), the weight of the shell being normal (5G/ 4).
Then the weight of ghell and spars is

5/ g+ 1/2 G= /4 G

e) The same, but the weight of the shell halved; but also
struts of constant thickness and constant weight (56/8). The weight
of the shell with struts and spars is then
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1/2C+ 5/8G+ 5/8G= 7/uG

which is as before,

7 614, All these cases are applicable only to very large
balloons, for which the shell is of adequate thickness. Small sizes
of vessel cause the shell to be too thin and so are not practical.

Then we can assume a shell of constant thickness generally,
for all sizes of vessel, large and small.

f) For small sizes it is sufficient to take the weight of
spars and struts as proportional to the lift, from (613); +this is

The weight of a shell is known from (601).

g) On the other hand, we can neglect the resistance of the
shell for vessels of large size, the spars and struts broviding the
resistance to the disruptive forces. We take the cross-section of
the spars as wvariable (as usual) and that of the struts as con-
Etant, so the weight is given by (600) as

To this we must add the weight of the shell in accordance
with (601). This formuls also contains the weight of the length-
wise mounting band, which may or may not be present (Figs. 1-7).
Where the shell acts as a supporting material, we may put the welght
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of this band as

[Q =]Gkr,
b

in which kb i the part (of course less than one) assigned to the

band .

615. The weight A of the shell with struts, spars, and band
b 1in cases a-g will be

a) A=0C(1+k),
b
b) A =6 (+k),
¢) A =0 (5/4+k)+alk
b 0,8
a) A =G (/4 +%),
b
e) A =6 (7/4+Kk),
b

f) A =alk +8m X {1+-'y§)ﬂ75
S,O 5, '”’1

7 2'}1_\ )
EG + 85y xi) et

|

~r
h=3
[
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616. The basis for deriving the equation defining the height
of the shell is that the weight of all perts and loads is equal to the
upthrust alU. This weight without the shell is given by (602-612) as

al(k, + k thytk +k +k +Gk ).
tp k c i r ch

Here the coefficients with subscripts represent the following:
k  black pire, k keel plus hold, k motors, k controls, k pas-
bp k m c P

sengers, and k reserve,
r

617. Also, k N is the weight of the vertical principal rods
c

or chains; this is known from (605), and if we put ¢ = klyi’ we
ch

have the weight as

n
k = - * gU k
G ch g Ten 1Y

which is proportional to the fourth power of the height y of the

1
balloon, because U isg proportional to the cube of Y . This means
1
that it is proportional to G, so k 1s a constant coefficient re-

ch
presenting a certain fraction of the weight G of a shell of variable
thickness.

618. The general equation for the height of the shell on the
above basis is
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A+ Gk + aU + +k +K +k +k = alU.
ch (ka kk M c &

P k)

This states that the weight of the shell A with the principal
rods Gk and the balanced keel plus hold is equal to half the up-
ch

thrust of the vessel after subtracting the weight of the light gas.

619. We do not propose to determine the weight of the keel
and other parts of the vessel:

aU(kbp +k 4 kM + kc + kp + kr).

My earlier work (e.g., "A simple study of an air vessel")
shows that this weight is about half of the total upthrust of the
vessel; on this basis we can simplify (618) to

A+ Ck = 1/2al.
' ch

620. A is known from (613), and k can be found from
ch

(617) as:

Kk = —alUy kv .
ch = okg - 7en Y1
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621. From this we must eliminate U and G; G we find from
(588) and (566) as

re y o~ 3
G = 2.2.. . n., TT’}' a &1 + —5) y X ;

U is known from (612).
Then we have that

For instance, if

then

ch ~

b
|
Co 1 \N



505

i.e., the weight of the chains is about 1/5 of the weight of a shell
of variable thickness.

£op. Tn cases a, b, 4, and e we can put (619) as

in which k 1is the constant coefficient in parentheses in (615); for
instance, in case &

A=6(1+k)
b

and sO on.
We eliminate U and G, simplify, and determine y or the
1

over-all height 2y of the shell to get
1

k
U

B

y =
1 Ve Yz ~
by (k + k +k)kl+—-3—)

s ch b yl

623. This shows that the over-all height 2y of the shell is
1

proportional to the strength K of the material and is inversely
proportional to the safety factor n. Tt is also inversely pro-



3006

portional to the density y of the material, to the sum (k + k  + k )

5 cg b
dependent [see (613)] on the design of shell, and to (1L +y /y ), which
3 1
is dependent on the excess pressure y /y of the gas at the lowest

5 1
point in the shell,

62k, Case a of (615), when the massive parts of the shell
are so small as to have negligible weight, is of little practical
importance. Then the dimensions are largest, other things being
equal, so A or K is least.

k
u

¥
1

than the Eifel tower. But such dimensions are far from obligatory;
for instance, the size is reduced by a factor 10 if the Strength is
increased by & factor 10, so the 2y of (622) will be 24 m.
1
625. In case b, which is very similar to the previous but has
a shell of constant thickness (for a given vessel), we find for the
same conditions that y = 102.6 m or 2y = 205.2 m.
1 1

2
Then putting K = 60 kg/mm 1in (é;l) and (622), with n = 6,
1,k =0,y =75, k=1,and y/y =1, we have k = 3/8 and
b s 3 1 ch

121.2 m, so the shell has a height of 242k m, or somewhat less

]

626. Turning now to the more practical cases d and e of
(613), we have

k = E; y =T78.4m and 2y = 156.8 m.

1 1

This is about half the height of the Eifel tower.

627. It is of interest to deduce the upthrust of such a
giant, &s well as the thickness of the lengthwise spars and that of
the shell.

To do this, we use the upthrust given by (612):
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628, We put k =1.2, ¥ = 150 m, T = 22/7, x =Ty , and

U 1 1 1
a = 0,001 to get aU = 9900 t. Not less then a tenth of this force may
pe devoted to passengers; allowing 100 kg for each, we obtain 9900

passengers.

629. Formule (562) expresses the sum of the cross-sectional
areas of the spars in the midsection of the shell.

This cross-section will be half that of (613) for cases d and
e, and for one spar half this. The area is X5, 80 the size of the spar
is

V/n 2 . n
X = T eay(y +vy ) - .
2 1 3 1 K

6%0. The shell thickness providing & safety factor n = 6
in the transverse direction is on average given by (594) as

.n
5 =aly +¥Y W ° - -
s 3 1 1 K
For case d, under the ususl conditions end with 2y = 150 m, we
1
have ® = 1.125 mn, which is rather thicker than roofing iron (about

5
three times ).

6%1. Struts are assumed in e; their cross-sectional area
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equals that of the shell, since this area (of shell or struts) is
8! in the lengthwise section of & shell of length !. Assuming one
strut per meter of lengthwise section and taking the struts as square

2
we have the side X of the square as

X=43 1,

s

With 8 = 0.562 mm and ! = 1000 mm we have X = 23,7 mm,
5
The struts will be thicker if more widely spaced. The struts
may be streamlined in cross-section, in which case they can increase
the surface area and 1ift of the shell. For instance, an elongation

of nine increases the 1ift by 7%, Or nearly doubles the number of
passengers,

632. From (60L4) we have

This enables us to calculate the cross-section of the
principal chains, which support the hold, namely F = k950 cm®
ch
for cases d and e, If we assume that the chains take up half the
length of the airship and are 5 m apart, we find for double rows

2
that there are about 200 chains each of cross-section 25 em .

633. Equation (622) can be put in more general form if we
assume that the shell and its massive parts take up some fraction
other than half of the upthrust aU, this part being e:
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e=1-( +k +k +k +Kk +k ).
Then (622) is replaced by
ok + k + k )= eal
ch b
and
ekUK
y = .
1 7 Y3~
oy n{k + k +k A1+ 77
S ch b yl
This last reveals the relation of 2y 1o weight e of the
o 1
shell: the 1atter increases with y
1
63L, An approximation to replace (621) is
s elkiky |
o Sk = yU .
. Ch -/ 3 ~
b ! . L. L —_
T SRR Ch i
T . Y1
-0k @i S b et
NAF R csegos cB e Ao e ' ; E
This shows that the chain-weight coefficient decreases as
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the relative weight e (shell plus massive parts) increases.

635. We start with the smallest sizes for our first con-

struction of airship, of course. From (633) we see that Yy decreases
’ 1

as the safety factor n increases, so we can construct not only

giants but also small airships while gaining in safety factor. As-

suming & given n, we deduce y from (633), and then from (594) we
1

calculate the thickness of the shell,
For cases a, b, and d we take the full calculated thickness

8; for case e, half of it as given by (613).

636. We deduce n from (630) and then eliminate y from
1

the resulting formula by means of (633) to get

2 2
kUae - K

E 2 ¥y
8y 5 (k+k_ +k) (} + ;} 7
s s ch b Iy )

If we assume that the breaking strength K 1is proportional to
Y , @8 is true for some materials, we have 7 constant, in which
B 5

case the safety factor increases as 7y and % decrease.
s S

637. TFor instance, if we were to replace iron by aluminum in
any of the cases a-e and reduce the thickness of the shell by a
factor 6, the safety factor would increase by & factor 18 (aluminum
is 3 times lighter than iron), |

The safety factor should, naturally, be increased, in view of
the small thickness of the shell, but we should hardly increase the
safety factor of the massive parts (struts, longitudinal &pars,
priucipal chains), for this is quite unproductive. For what reason
should we increase, for example, the safety factor of the longitudinal
spars 18 times sixfold, i.e., to 108?

These equations for the height of the shell are thus un-
suitable for cases d and e if we wish to make an airship of the
least size.
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They are applicable, though, to cases & and b.

638. TFor example, for cases b (shell of constant thickness,
weight of massive parts negligible) we have from (630) subject to
the conditions of (625) that & = 2 mm; we have taken 2y as 200 m.

8 1
If now we replace iron by aluminum and reduce the thickness by a
factor 10, the height is reduced by & factor 30 and so will be 2y =
1
= 6.67 m. The aluminum shell will be 0.2 mm thick, or 2-1/2 times
less than the thickness of roofing iromn.

639, If we leave the material as iron but reduce the thick-
ness by a factor of slightly more than 13, we have 2y =15 m and
1
8 = 0.15 mm.
s

This thickness of tinplate is used commercially; I have such
material in sheets about 50 cm long and about 30 cm wide.

These sheets are very rigid, and T consider them to be a
material suitable for constructing airships that are not playthings,
although case b may mostly be of significance as an experiment, in
which case the size could even be reduced to 2-3 m.

6h0. We eliminate n from (630) and (636) to find
y & , which we eliminate in turn from (636) and find n as
s B

1 X eky

n = — ¢ . d

2 yl(k+k +kb)<1+§3>

ch

Taking K/7 as roughly constant for constructional materials,
we see that the safety factor increases as y decreases; but ex-
1
cessive safety in the massive parts 1is unnecessary and unfavorable.

€hl. The k of (634) is not dependent on m, 7y, OF 5 , if we
ch 5
assume & single material and the same n for all parts of the shell.
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642, Now we consider an aluminum airship of type e, i.e.,
with struts and lengthwise spars as in (613), and put k = 1,

u
a = 0.001 (ton/mB), k =0,y =2.5,A=74, 5 =0.2 mm, e =
2b 8 s
= 0.5, K = 20 kg/mm , k =3, and y/y =1; then from (633),

3 1
(634), and (6L40)

i

In spite of the thin shell and light material, 2y = 17 m,
1
80 the airship is hardly of small height; but the safety factor
is enormous, and, although this may be desirable for the shell
(in view of its thinness), it is in no way desirable for the
massive parts, because weight economy is of rarticular value for
8 balloon.

643, Case ¢ is one in which the shell is designed to sustain
lengthwise and transverse forces but still has massive parts, whose
resistance we neglect and whose weight we take as proportional to
the upthrust,.

The thickness of the spars and struts is, from (613), pro-
portional to the dimensions of the balloon.

The equation defining y 1is found, as in other cases, from

1
(815), (617), (621), and (627).

We have

(e - kDK

e (5 N )
275 n kﬁ'+ kch + kb /)(ﬁ + 7
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and k we know from (621).
ch
This equation is the most applicable to giant airships, for
which the shell is reasonably thick and the massive parts are not of
excessive weight or strength.
2

i, Wepub k =1, k = 0.05, K = 60 kg/mn , kb = 0,

u 5
n=6,c="T.5,7 =Y, l = 0.5, and k, = 3; then
3 1
3
k =323 y =9.3m; % = 1.9 mm.
ch 8 1 )

This k indicates that the spars and struts take up only

5
1/20 of the upthrust aU of the vessel, or l/lO of the weight of the
shell with its massive attachments and chains.

645, Clearly, larger k imply smaller y ; but then the shell
1

S
will be thinner [see (59Lk) or (630)]. Iet k = 0.25, the rest being

<]
as in (f44). Then y = 51.bm, k¥ = 5/8, and & = 0.53 mm.
1 ch s

GLE. Tf we increase k further (make the spars and struts
more massive), we reduce the size of the vessel; the thickness of
the shell is reduced.

In case ¢ we may also increase n by a factor 3; then
(641) and (643) show that y 1is reduced by a factor 3, which re-

1
quires from (658) a shell 3 times thinner. Then 2y = 34.36 m,
1
n =18, and & = 0,177 mm.
s

The shell is of inadequate thickness, and the size of the

airship is enormous.

647. Case e of (615) has a shell of such small size that the
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safety factor of the shell and the other parts may be taken as more
than sufficient. In fact, formula (592), for a shell of constant
thickness, shows that the safety factor is inversely proportional to
¥y . Therefore the safety factor of a shell of small size made of
1
ordinary commercial tinplate needs no attention at all,
From (615) and (618) we have

8 2 y?.\
aUk +-Tryx<1+-'—)n78 + Gk =aU (1 - e).
s 3 11 5 x° 5 6 ch
We put
alk + Gk = alk
5 ch s,ch
in which k is the sum of the coefficients for spars, struts, and
s,ch

chains, the weight of the last being taken as proportional to the
upthrust aU. Then eliminating U by means of (627) or (612), we have

7 /i 2 §i ~
70 -7 =
SS& 5 X%
y = .
Obak (1 - e -k )
U s,ch

648. Here we put, for example: M =1, y = 2,5 (aluminum),
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§ = 0.2 mu (thinner than ordinary tinplate by & factor 1-1/2), a =
S 2 )
- 0,001, k =1, e= 0.4, k = 0.2; we neglect 2y /5% to get
u §,ch 11
that y = 25/8 mand 2y = o5/ m.
1 1
Such airships mway be made for instruction in design rather
than for practical use.
The over-all height will be only p5/8 m if 5 is made smaller
. s
by a factor two. Aluminum sheet 1/12 mm thick feels more rigid
than the material of a visiting card. This design may be used for
practical construction.
it is very difficult to construct the shell of a small air-
ship from corrugated metal, but there is no difficulty in using
flat sheets [see (34h2-346)].

ghg. Case f is applicable only to relatively small airships,
whereas case g 18 applicable mainly to vast ones.

In these the spars, struts, and chains are designed to sus-
tain the action of disruptive forces; the resistance of the shell
is neglected, and its thickness is determined by considerations of
practicality.

The equation for 27 is, from (615), (618), and (633):

1

79 ~ 8 ™
G +kx +b )+-1yx (1+ = Ty 5 =aU (1 - e).
BT J 3 11 <; Xﬁ) s s

We use (621) and (612) to eliminate G and U; simplifying and
deriving y , We have
1

A /A2
1 2 L
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in which
A _ e
2 7
AR
Ly (L + —é;)<3 +k 4 ki) n
s yl ch b
and

M 1+ 2 yﬁ\ " K
+ = =
5T S : Xi)

B

La (ﬁ + §§> . (E + kch + kb:> n

2
650. We put k =1, e = 0.5, K = 60 kg/mm , y = 7.5 (iron or

u

steel), y =y , k =3/8 [see (634)], k = 0,8 =0.2mm, n =6,
3 1 ch 5 5 b s

M=1, and a = 0,001; 2yl/5x is neglected, as before.

1

Then y =54.8mor y = 8.7 m, so the shell can be 109.6 or
1 1
17.4 m in diameter,

651. The tinplate assumed is 1-1/2 times thinner than the
ordinary commercial plate used for cheap pans and so on., The shell
together with its massive parts way be considered practicable even
for iron 0.15 mm thick, which is also much used and which I have
tested.

Putting & = 0.15 mm and using the conditions of (650), we have

s
Yy =5T.26mand y = 6.26 m.
1 1
The lesser diameter is then about 12-1/2 m, which is only
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slightly more than that of recent (1907) airships, e.g., Iebody's.

652. A further calculation with & = 0.3 (ordinary tinplate)
s
gives y = 48.89meand y = 14,61 m.
1 1
These dimensions are vast for the shell of the first air-

ship (2y = 29.22 m).
1

653. We put y = 2.5 and K = 20 kg/mm in (6L9) for an aluminum
shell; then with the conditions of (650), but with 6 = 0,15 mm and

0.30 mm, we have y = 1.95 and 61.57 m (0.15 mm) and y = 4,00 and
1 1

59.50 m (0.3 mm).
The least diameter of an aluminum airship with a shell 0.15 mm

thick is then about U m.

654, We see from (649) that A /h > B; if this is not so, the
shell will be too heavy, so the airship will not rise. From this we
have

2
ka(l - e) k,

5 <

. 20117 K1+_3"><1+_ .

PﬁULﬁ%
/
=

Then the conditions of (650) give that & < 1.1l.
s

The greatest thickness for the shell under these conditions in
case £ is thus 1.11 mm,

Then y = A/2, so we get the half-height of the thickest shell

1
as y = 63.5. The other 1limit, 5 =0, givesy =Aandy = 0.
1 s 1 1
The thickest shell will thus have 2y = 127 m and the thinnest
1
2y = 0.
1
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655. The formulas of (649) give two solutions for the height
of the shell, but this does not mean that only these two sizes are
possible under given conditions, e.g., those of (650). In fact, we
can put (649) as

L
1}

H o
|4+
K

ol %
I
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in which C and D are taken as constants. For a given n we find
only two values for y ; e.g., 57.26 and 6.26 m, as in (651).
1
But if n is increased, and this (increased safety) is

2
permissible, then the C /n2 term will decrease more rapidly than
I/n, so the limits of y will come closer together. The two roots

1
2,2
for y become the same when C /n = D/n.
1
From this formula we see that this occcurs when

n =

2
c_
D

For instance, for the case of (651) we have n = 12.6, or an
increase by a factor 2.1 in the safety relative to the previous case,
in which n was 6 [see (650)]; y will be ¢/n = 15.12 m.

1

We can therefore make shells of heights not only 114.5 and
12.5 m, as in (651), but of all intermediate sizes, which will be of
higher safety factor,

656. There are ways of reducing y in cases a-e (633, 643, and
1

649) other than increasing n, such as the following:
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1) reduction in e (relative weight of shell), which in part
is favorable, because more upthrust will be available for the pas-
sengers, cargo, and so on; if the proportion going to the shell is
halved (e = 0.25 instead of 0.5), the height is reduced by a factor
2, but the weight of all the other parts may be increased by 0.25 of
the upthrust.

2) & less strong material may be used (K can be reduced );
3) the pressure y 1In the lower part of the shell can be in-
creased, which gives a gain in stability;

L) the density y may be increased for a fixed K; and
finally

5) k+ k +k maybe increased (in accordance with the
ch b
design of vessel), which also reduces ¥y . The height 2y 1is not
1 1
dependent on a (except in case f), namely is not dependent on the
density difference between the light gas and air.

The dimensions of course increase if the quantities are
altered in the reverse Way. Tor instance, doubling of the strength
of the material involves & doubling of the dimensions and an 8-fold
increase in the upthrust.

To conclude this section we may note that metal airships are
the more rigid the larger they are.

The least size for an iron shell is 12.5 m in height, or
4 m for an aluminum one.

An aluminum shell 12.5m high is very rigid (in view of its
massive parts, the shell also being nearly a8 thick as roofing iron).

Schwarz's and Dupluie de Loma's airships were larger; the
above size is close to that of the current (1907) French airships.

Schwarz used aluminum 0.2 mm thick in his airship, which 1s
less than half the thickness (0.45 mm) T now propose.

Zeppelin's and Schwarz's airships hed internal lattice
structures, which provided rigidity but consumed much of the up-
thrust.

This rigidity and lack of flexibility in the shell make it
extremely sensitive to the slightes;’%hocks, which in part may be
why the Zeppelin trials were carried out over water.
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XIV. MOTION OF AN AIRSHIP*

A. Independent Uniform Horizontal Motion

By independent motion I mean movement of the dirigible in a
stagnant atmosphere (in the absence of wind). Such motion may be hori-
zontal, vertical, or inclined and may be performed by the use of en-
gines or the upthrust of the vessel (positive or negative) when this
is not balanced by ballast.

In this chapter I consider only horizontal motion produced by
the power of the motors.

The force on a plane moving along a straight line perpendicu-
lar to itself is given by Poncelet's theoretical formula as

— . 5v°, (1)

in which da is the density of the fluid, g is the acceleration due to

gravity, and S is the surface area of the plate, which is of small
length or not elongated.
Some have used far from accurate experimental results to as-

sume that the resistance of a medium is proportional to Sn, with

n >1; if this were 50, calculations on the speeds of water craft
would be incorrect, but this is not found to be so. The resistances
offered by air and water are, in fact, found to show an unusual and
unexpected similarity.

Calieter and Colardo found that the forces in their experi-
ments were only slightly greater than those predicted by Poncelet's
theory (by a factor of about 1.2); the lengthwise force on the bird-
shaped surface of an airship will be much less. Let it be less than
that given by (1) by a factor uf; then the force exerted on the

vessel in the direction of its longitudinal motion is

tm
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p = =P (2)

in which e, is the density of air; Ugp is the mean form factor of the

body, rudders, gondola, supports, and so on; Fp is the sum of the

projections of these parts on & plane normal to the direction of the
flow; and v is the flow speed.

P consists of two principal resistances: that of the body P1
and that of the other parts PE' We have

7aFlv2
p. = (3)
1 2gul
and
v F V2
P, = 2z ()
2gu2

in which 0y and F1 are the form factor and cross-section (projection)

of +the body, Uy and F2 being the same for the other parts.

Comparison of (2) with (3) and (L) gives

5|
=

. (5)

HJS:: "‘d
o P
RIS
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Of course, u, is dependent on the elongation xl/yl of the air-

ship, on the absolute dimensions, on the shape, and on the speed; it
is thus a function of four variables; Uy = F (Xl/yl’ X1, V, shape).

My experiments indicate the same as regards Uy (for the other

parts of the vessel). The useful or minimal work required per unit
time to maintain the uniform motion is Pv; but the work produced by

the vessel's engines is very much greater, because the propeller sets
the surrounding air in motion, so part of the work from the motor
produces a useless perturbation in the medium around the screw.

The work produced by the engines must therefore be greater by
a factor k. (in fact, two) and so is

N = Pth: (6)

in which kh is dependent on the diameter and performance of the screw

(with respect to the total resistance of the airship) as well as on
the position relative to the body; kh approaches unity as the design

1s improved, the diameter ig adapted best, and the position is im-
proved.
Fp is the sum of the projected areas of the parts of the air-

ship on a plane normal to the direction of motion, so
F_ = my° (7)
P 15

in which ¥y is half the height (radius of the largest cross-section

of the expanded shell) and kF is a dimensionless factor; this should,
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on the one hand, be less than unity, on account of the deviation from
circular form in the cross-section, while on the other hand it should
be larger than unity, on account of the projection of the chains,
ties, controls, keel, and other parts.

My large metal airships have kF close to unity, because the

chains are not numerous (or are completely covered) and are of good
cross-section as regards resistance; the gondola and the control
surfaces may be considered as almost flat.

We eliminate P from (6) by means of (2) and then S by means of

(7) to get

(8)

Here

(9)

=
U
=
=]
=4
e

in which En is the energy (work) produced by the vessel's engines per
unit weight (kg) in unit time (second); Q is the upthrust; and ky is

the motor factor (part of the upthrust taken by the motors) -
The upthrust for a parabolic airship is

a=0(y, -7) = = kR g = %) (10)

in which ku is the factor for the volume U filled with gas (because
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the shell is not fully inflated), X is half the length of the vessel
(rather, shell), and 7g 1s the density of the gas in the shell.

We eliminate N and then Q from (8) by means of (9) and (10) to
get

E k
n m

? UpX o (11)

Y.
v‘/lsgcl )

o I

It must be pointed out that this parabolic volume is very
sharp-ended, imperfect, and (as regards upthrust) unsuitable.

Actual airships have much greater completeness of water dis-
placement (the naval term), but the present shape has the advantage
as regards resistance.

In speaking of a parabolic shape, I have in mind mainly the
cubic displacement; the shape of the body can be different, and the
midsection (area of greatest cross-section) can be brought somewhat
forward towards the nose.

The following conclusions are drawn from (11):

A. The independent forward speed of the vessel ig not de-
pendent on 7a; it 1s governed solely by the ratio 7g/7a of the density

of the material filling the vessel to the density of the surrounding
medium®,

This ratio is that of the light gas to that of air in this
case; it remains the same if the shell expands and contracts freely¥¥*,
This means that the speed of the independent motion does not alter

*This is based on the assumption that En remains unaltered in spite
of variation in 7y

*¥Even in spite of changes in gas temperature and pressure, if these
are the same inside and outside the shell.
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when the balloon rises or falls, if we neglect any change In E and
n

in the form factor arising from volume changes in the gas or from
variation in ku/kF, which variation is slight.

Tf we use (11) to compare vessels of the same X, floating in

any medium (rarefied or very dense air, or even water), we find that
a water craft (steamship) has a very small advantage over an air one
(airship). The factor (1 -7 Jya) For the latter filled (say) with

hydrogen is 13/1k4, whereas for a steamship it is almost one, for a
sea-going vessel 1s filled with air, whose density is minute relative
to that of water.

Extraction of the cube root in (11) gives us that the speed of
the water vessel will be larger by 7g/37a’ or 1/42, than that of the

air one containing hydrogen. In deducing this we assunme that the
other quantities appearing in (ll) are the same, which can scarcely
be said to be the case for Up (form factor), for example.

If our atmosphere were 10, 100, or 1000 times denser or more
rarefied, airships of the same size and of the same construction
would move neither more slowly or more rapidly as a result.

This involves the assumption that En remains unaltered, of

course. This can be insured if the change in density is slight by
adjustment of the shaft speed, alteration of valve sizes, increasing
the draft in furnaces of steam boilers, and so on.

But there is a limit to this. We may assume that En increases

in proportion to the density of the air (oxygen content) for internal-
combustion engines generally but tends to decrease also on account of
the lower speed of escape from valves and pipes, on account of the
higher density; the result is that the shaft speed in inversely pro-
portional to the square root of the air density.

The final result is that En probably increases roughly in pro-

portion to the square root of the density of the medium supporting
the combustion, so in (11) we put

(1)
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For instance, the density at a height of 12 versts is 4 times
lower (y /y = 1/&3, 50 E is reduced by a factor 2 and the speed

a al n
v of the airship by a factor

641 Tal 8/ 1.26,
a
or by 20%.
In these formulas E denotes the energy of the motor corres-
ponding to the density y Ef the medium.
Thus we see that :he variation in E for dirigibles of identical

n
size and similar design at various heights results in a speed pro-
portional to the sixth root of the density of the medium that supports
the combustion. The table following expresses this.

B, The speed of the vessel is dependent on the x dimension
[see (11)]. 1
The form factor u alters little in response to change of size
i
if the dimensions increase in proportion, i.e., if the vessel re-
mains geometrically similar as it enlarges or shrinks.
In this case

x =y A, (12)
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in which M is the constant ratio of the length of the shell to the
height. This shows that the independent horizontal speed of the air-
ship increases with the size; conversely, models of airships cannot
reach high speeds, and their reduction u accentuates this,

f
TABLE 1k4-1
Height (of flight) of
dirigible, km ol 1 2 3 L 5 10
rarefaction, y /7y 1| 0.9 | 0.8 ]0.715| 0.636 | 0.56k| 0.39
a al

relative speed 1| 0.98 |1 0.96 | 0.9% | 0.92 0.91 | 0.85
% reduction in speed ol 2.0 [L4.2 |6.k 8.7 9.9 10.78

A set of similar dirigibles varying greatly in size will move
with different speeds, which are proportional to the cube roots of
their linear dimensions [see (11)].

The speed is also increased if the length 2x 1is increased

1
while keeping the height 2y unchanged provided that u increases Or
1 il
remains unchanged.

This is applicable to very short (not elongated) airships; a

highly elongated shell gives the same speed when 2x 1is increased, be-

1
cause u 1is reduced almost exactly in proportion to the increase in
f
2x .
1
In general, any change in speed is governed by the change in
u x .

il
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If a destroyer could attain a speed of TO km/hr, an airship
of the same size under the same conditions could reach the same
speed; 1if it were larger, its speed would be correspondingly greater,
provided that the motor increases correspondingly.

For instance, the destroyer might be 30 m long and the airship
240 m (8 times larger), so the speed of the latter would be at least
2 times greater, or 140 hr, The dimensions of the largest possible
metal airships are larger by a further factor 8, so their independent
speed under identical conditions would be larger by a further factor
2, or 280 hr, leaving aside any improvement in u and consequent

f

increase in speed from this cause.

C. Formula (11) further shows that the speed v is proportion-
al to the cube roots of the motor energy E , of I/k (representing

' n h
screw perfection), of the form factor u , and of the relative weight
T
k of the motors. TFor instance, an increase in E u k by a factor 8
m n fm

increases v by a factor 2.

D. The speed of the vessel remains unchanged if the product
Euk is unaltered; so, if we assign a decreasing fraction k of
nfm m
the upthrust to the motors, we must either increase the size of the
vessel in the same ratio or increase the energy of the motors leav-
ing the size unchanged, if we are not to lose speed. Conversely, if
we wish to reduce the dimensions of the vessel by some factor, we must
either devote a larger fraction k of the upthrust to the motors or
m
increase the energy E of these by the same factor in order to leave
n
the speed v unchanged.
For instance, k E must be increased by a factor 4 if we
mn
wish to reduce the size by a factor 4 without affecting the speed ;
this can be done in various ways, e.g., by increasing the energy by
a factor 2 and devoting twice the proportion of the upthrust to the
motors,

E. (11) shows that the speed is also dependent on the

density of the gas in the airship, being proportional to
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l - — -
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This relation is represented by the following table, in which
the density of the light gas varies from Z€ro to unity (i.e., up to
the density of air):

TABLE 14-2
1
v /7 o lo.1lo.2 |0.3 [0k 0.5 (0.6 10T 0.8 0.9 [1.0
g a,
v 1.00(0.97}0.93 0.89|0.84|0.79 0.74]0.67 0.58{0.46 | O
|

The second line shows that the forward speed decreases €X-
tremely slowly as the density increases (this speed has been taken
as unity for an impossibly 1ight ideal gas, namely one of zero den-
sity). A gas density of 0.1 {nearly 1.5 times that of hydrogen) re-
duces the speed by only 3%; a density of 0.4 (near that of heavy
{1luminating gas) reduces the speed by 16%, or by about 1/6 of the
ideal velue. Even for the density of air heated 1O 100° the speed
is reduced by only 33%, or bR

On the other hand, increase in gas density ig accompanied by
other very important defects: the upthrust decresses in proportion
to y - y @and hence is represented by the sequence 1, 0.9, 0.8, 0.7,

g a
0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and O.

This fall in upthrust requires corresponding reductions in the
weight of shell and 80 forth, which makes construction very difficult.
The useful (free) upthrust (e.g., the number of passengers and 80 on)
is also reduced in the same ratio.

Equation (11) epables us to find the absolute value of V.
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First we take fairly ideal conditions: g = 9,8 m/secg,
E, = 25 kg-m per kg weight (which implies & weight of 3 kg per
horsepower, or 75 kg-m/sec), k = L/8, u =50, x =105m (my

m hif 1
iron airship for 200 passengers, of size equal to a large steam-
ship), k /k =1, x = 2, and y /y = 0.1; then (11) gives v =

u F h g a
= 53,7 m/éec or 193 km/hr*.

The dimensions of the largest possible metal alrships are
10 times larger, so these would have speeds of 116 m/sec or L1t km/hr
under identical conditions,

Of course, such speeds and airships can only be dreamt of at
bresent, Now we come down to earth to ordinary dirigibles and im-
Pose for them strict conditions, which from my point of view it isg
difficult to doubt as to their applicability, E (motor power )

n
varies greatly; it ranges up to 75 kg—m/sec ber kg for gas or
benzine motors at bresent. Airships presently use benzine motors
of power 3 or 4 times lower (20-25 kg-m). The specific weight of
the engine may be put as 75/E ; which is the weight of the motor
ber horsepower. n

For our calculations we may reasonably assume a specific weight
of 4 kg per np (E of 20 kg-m/sec per kg weight ); k (relative

n m
weight of the motors) may be about 1/8 of the total upthrust of the

vessel., We assume an airship of displacement 10 000 m3 (upthrust
10 tons),

*My metal shells for dirigibles are protected in nine countries
(Russia, Germany, Austria, Great Britain, the United States, and so
on); the patents were taken out in 1910-1911. Improved all-metal
shells without soft folds cannot be Protected, because the laws of
all countries forbid the grant of patents to inventors who have gl1-
ready published their inventions in the press, as I did in 1892 and
even earlier (in the 1890s), when T gave a report of my invention in
Division T of the Imperial Russian Technical Society,
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The volumes of current dirigibles¥* range up to 20 000 m~, and
the displacement is still tending to rise, 8O this 10 tons is not an
overestimate of the 1lift. We assign 8 to the motors, which gives
them 1250 kg and hence & power of 25 000¥¥ kg-m/zec or 333 hp, which
does not exceed real values.

Experiments (mine and others') indicate that u (form factor)

f
increases with the size and speed of the airship.

Fven a model 33 cm long and 10 cm wide moving at L4 m/sec had a
form factor of 14, No lesser value should be assumed. In my view,
good shapes should give values up to 50, as for ships.

The length 2x for moderate volumes is about 100 m in practice,

1
so the average half-length X is about 50, which I take as basic
1
value. One has already heard talk of planned airships of displace-

3
ment 50 000 to 100 000 m , which correspond to a large ocean-going
steamship of length about 200 m.

My calculations indicate that the strength of metals is such
as to allow dirigibles up to 2000 m in length; I do not know
whether these are possible in other respects, but my calculations
show that they are as regards strength of shell.

Here k (the part filled with 1ight gas as a ratio to the

u
volume of the fully inflated airship) is taken as 0.7, SO 0.3 of the
maximum volume (nearly 3) is taken by airbags or is left for ex-
pansion during ascent. This reserve for expansion allows the air-
ship to rise to heights of at least 2 km.

We put kp as 1.k, which means that the resistance of the

stays, gondola, rudders, and sO On is taken as equal to the re-
sistance of the shell filled with hydrogen; this is excessively
generous as regards my metal airships and is quite adequate for
ordinary dirigibles.

3

The values are therefore: u =1k, y = 0.0012 (t/m ),
T 8

*The British Naval Airship 1; construction has begun afresh.

*¥The mss had 201 250 (Editor).
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3

¥y = 0,0002 (t/m ) (a gas 6 times lighter than air and slightly

g
more than 2 times as heavy as hydrogen), k =0.7, k¥ = 1.h, E =20

u F n
(specific weight of motor 3.75 kg/hp), k = 1/8, k =2 (k is even
m h h

less for aeroplanes and ranges down to 1.3, because the efficiency

k of the screw ranges up to 0.75; but for an airship I assume

h
only 0.5 at present), x = 50 m (2x ranges up to 156 m in current
1 1
dirigibles, as in the Naval Airship 1 in Britain). Then from (11) we
have v = 19.68 m/sec or 70.8 kw/hr.
I have made some other calculations on this airship. The
length of the shell or dirigible is 2x = 100 m; the height when
1
fully inflated, 2y , is given by (12) with the fineness ratio put
1

as seven, 50 2y = 14,3 m,
1
The volume U 1is given by (10) as

2 2
U=16/15Tk y.x = 5986 m . (13)
Ul;

This equation also gives us that A (upthrust of the dirigible)
is 5986 kg; of this we assign 1/8 to reserve and the same to lifting
H men, whose number (taking each as 75 kg) is then

H= — *k =10 men. (131)

The weight of the motors and the spare 1ift is
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QkM = 748 kg. (1)

The power (horsepower ) is

e’ (15)

P = = 19905 hp
™

The power Per passenger 1is thus about 20 steam horsepower.
The force P of the opposing airstream on the entire vessel

is given by (2) and (7) as

TTk'y

F/a 22

P = — Yy vV = 381 kg. (16)
2g "u, 1

The numbers have been rounded off a little to give the fol-
lowing table containing corresponding values for other sizes of
airship (100 to 2000 m long and 14 to 286 m high). In all cases
kx = 1/8, with about 20 hp per passenger.

m
The columns give 2X (length of shell of gasholder), 2y
1 1
(height), U or Q (volume of gas in m? and 1ift in kg), @k (L/8 of
m

this 1ift, or weight of motors, the same going to passengers and to
reserve 1ift, total 30/8)%, (power of motors, in steam horsepower ),

H (number of passengers ), V (speed in sec), v (speed in hr),
1

*Teaving 5/ 8 of the upthrust for shell, gondola, and so on.
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and P (lengthwise force of opposing airstream on whole airship in ke ).
The preceding table shows that the speed increases con-
tinuously with the size of the airship; (11) shows that the speed
remains unchanged if k x is constant, which occurs when k varies
m 1 m
in inverse proportion to x .
1
If 70 km/hr is taken as sufficient for practical purposes, then
k (part of upthrust assigned to motors) can be reduced in accordance
m
with the increase in x (size). This then gives an economy in horse-
1
power per passenger, as the following table shows.

TABLE 1h4-L
i ' ! : - ; !
Height 2y = 14.3 17.1 21.4% . 28.6 142.9; 57.1. 85.7 142.9(285.7
1 ' ! ' i
relative . !
weight of f , : !
motors, k | 0.125 0.104 0.833 0.062 0.0k2 0.031 0.021 0.012;0.006
® : % |
! ! | e *
power per | ; : : _ i
passenger, § : : : !
p/H 20 | 16.7 13.3 10.0 6.7 - 5.0.3.3 ;2.0 ; 1.0
. , ; H i i
! ; i 3 l
power p 200 | 288 | u50 ;800 | 1800 ‘;32002 7200 {20000 |80000
1 ; f i ! :
L : ! | J i

The first line gives the height of the middle part of the shell
(m); the second, k (part of upthrust assigned to motors ); and the
m
third, p/H (horsepower per passenger). This last is one for an airship
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having the height of the Eifel tower. The force from the airstream
will also be much less than the P given in the previous table. We
should not forget that the speeds of these vessels are constant

(70 hr) only when there is no very strong opposing wind to be
overcome,

Such speeds are hardly reached by present dirigibles, but
there are reasons for this: the vast resistance of the stays and
bubble-shaped stabilizers, the poor shape¥ of the body, which often
takes the form of a sausage or pointed cylinder (it would be of in-
terest to trace the evolution of the shape in steamships ), Further,
there are the inevitable folds in the soft shell, the alrscrew (of
size insufficient to correspond to the vast resistance of the shell),
the stays, stabilizers, and so on.

I believe that the speeds listed in the above two tables will
not merely be reached when all these defects are removed but will
also be greatly exceeded.

Formula (11) shows that E k must be increased if we wish to

nm
reduce 2x (which has advantages and can be done if organic materials
1
are used for the shell) while retaining the speed of 70 km/hr.

If, for example, we wish to reduce the 100 m of the shell to
50 m, we can do this eilther by assigning twice as much 1ift to the
motors (l/h instead of 1/8) or by doubling the energy of the latter
(use & specific weight of 2 kg/hp instead of 4). Alternatively,

both could be increased by a factor JE:.the speed of TO km/hr belng
retained with & consumption of light gas reduced by a factor of 8

3 3
(750 m instead of 600 m ). Airships smaller than this are not general-
1y made.
The formulas enable us to show that an airship of payload equal
to that of a steamship has the higher speed. We eliminate x from (11)
1
on the basis that

X =y)\, (12)

¥Usually deviating from the underwater shape of a steamship.
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in which A is the ratio of the length of the fully expanded shell to
the greatest dismeter. We then put that the 1ift Q of (10) corres-
ponds to &an unaltered value of A:

2
p=mk (y -y ) VX
5 ve g L1

We eliminate x and ¥ from (11) by means of these two equa-
1
tions to get that

[ — / ng
5 [328 Ky ky o] 15 (2 'yf;)
V= _r,f_"""Epufx e (17)
1 k k
167k _A
h F T U 7&

This shovws that the speed for a fixed upthrust A falls as W€
jncrease the density of the air (7 ) or of the supporting medium

a
generally. For instance, consider three vessels of the same payload
(e 8y ten passengers) one floating in the air near the ground,
gnother in water, and the third at & height such that the air is

97
729 times less dense; the last has a speed J 729 (about o) times

greater than thet of the first, while the second nas a speed about

o times less than the first. 1In other words, the speed of & water
craft for a given payload A is about half of that of an airship

floating at ocean level, while airships designed for constant pay-
1load but various heights will have speeds inversely proportional to

Ve, 9and hence higher speeds in the higher layers of the atmosphere.
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We should not forget the conclusion of (111) on the effects
Of the density of the medium on the energy of the motors, 3
Formula (17) shows that the speed v ig proportional to VG%:—;
[N

(lll) gives that &

VE -UE, JZ_

a1

Then the speed v is broportional to

3 — }8 | g
VB, T 5
e

18&
or to V/7ﬁ .

This means that v even falls as the density decreases (for
a given A), but only very slowly. TFor instance, the density of the
air is reduced by a factor 4 at a height or 12 versts, so the speed
of an airship is reduced by a factor vﬂBr 1.08, namely by T.49,

The table following expresses this.

(17) also shows that the speed 1s proportional to the ninth
root of A or of the displacement (tonnage » This shows that any sd-
vantage in this respect from increasing the volume of the airship is
slight; %but large dirigibles have Bome very important advantages:
it is possible to provide a thick metal shell (which is cheap, in-



combustible, impermeable to gases, and unvarying), a gondola filled
with passengers, cheap transportation, solid and reliable motors to-
gether with stability of all kinds (e.g., 2 closed incombustible
gondola), 1ift adjustable by heating the light gas (hence ready
control of vertical motion), and so on.

TABLE 14-5

Height, km of 11213 i 5 |10

speed reduction,

The above table shows that the fixed speed (70 xm/hr ) leads to

reduction in k (proportion devoted to motor ) as the size Increases.
m

This also has advantages, for it increases the net upthrust, which

can be utilized to increase the reliability of the motors (which

are already reasonably solid at 4 kg specific weight, though ) and

of the other parts or to increase the payload.

For instance, 1/8 of the upthrust goes to the motors when the
height is 1k m, but only 1/160 (20 times less) when the height is a
1ittle less than that of the Eifel tower, and this without loss of in-
dependent horizontal speed.

The vast sizes of airship in these tables are, of course,
merely speculations, although they are based on strictly scienmtific
calculations not given here; but we have seen that life has often
made scientific dreams into realities. For instance, the phonograph
unexpectedly and simply solved the problem of the talking machine
thereby surpassing Helmholtz's detailed theories. Spectral analysils
solved the problem of the composition of heavenly bodies, although
the possibility of solving this problem even in the future had been
denied by the most learned thinkers. Much might be said on this.

1 am not the only one to have thought of large airships; Giffard drew
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up plans for one of volume 220 000 mB. Although an idealist, he was
also an experienced practical engineer who had personally tested out
his ideas and spent a fortune on it. Blindness and suicide ended his
life and work; but now engineers are planning dirigibles of volume

50 000 m . The tendency to increase the volume of airships is not de-
clining, but difficulties arise over lack of strength, combustibility,
and cost for the current organic shells, quite apart from doubts over
the need for such vast expense. The general public knows little about
airships, and for this reason the powers that be do not support the
work.

B. TInertia of a Vessel

(Inertial Range)

It is said that an airship is a bubble and does not have high
inertia; give such a bubble a push, and it will travel only a short
way before coming to rest on account of the resistance of the air and
its low kinetic energy. On the other hand, give a push to a massive
body sufficient to give it the same speed, and it will travel far
(e.g., on wheels or on ice skates), covering a considerable distance
before it stops because it has lost its kinetic energy in overcoming
resistance,

This is the kind of inertia T have in mind.

But the matter is not so simple as it might seem at first
sight; we must know the effects of shape, size, and so on.

Let us compare the kinetic energy (vis viva) of our rapidly
moving airship with the resistance the air puts up; this will give
us an idea of the massiveness (inertia relative to that of the medium).

We take the general case, in which the weight of the vessel is
not equal to that of the medium it displaces, which makes it applicable
to living and dead aeroplanes (i.e., to insects, birds, and artificial
flying machines),

2
The kinetic energy is mv /2g, in which m/g is the mass of the
vessel. If the shell has the smooth parabolic form of (13), we have
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2

v 16 _ 2 v

m—=—"Ty XXk Yo (18)
og 15 11U 28

essel (total welght divided

Here y 1is the mean density of the V¥

v

by the volume).

From (2) ce of the medium as

and (7) we have the resistan

Tk o)
P = —x y2v . (19)
2gu
& f

of the vessel is expressed by

nertial range)
tance of the medium at that

The inertness (i
by the resis

dividing the kinetic energy

gpeed.
we have

Dividing and gimplifying the last two equations,
this as

L]

N I A
5 : P = ' ufx (go)
g 15 kF e, 1

d by the initially

e distance travele
the engine is, of

The result expresses th
e P does not fall;

moving vessel if the resistanc
course, not operating.

The formula sho
energy of the moving v

ws that this inertial range (relative kinetic
ehicle) is directly proportional to:
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1) the dimensions (x );
1
2) the form factor u ; and
f

3) the relative density 7€/ya (ratio of the mean

density ¥ to the density y of the surrounding
v a

med ium )*,

For other shapes (sphere or §till worse) the relative energy
will be small compared with bodies of good shape (relative to the
resistance of the medium, that is).

It will also be small for small vessels (x small) because

1
the form factor is low for small x , no matter how good the shape
1
may be, on account of the need to overcome friction. We may say that
this formuls indicates that the inertial range of a large flying
machine (other things being equal) increases with the size.

We now compare an aeroplane (with a closed body, such as
Newport's ) with an airship. On the one hand, the aeroplane has the
advantage, because Y /Y 1is large; but u 1is much less, especially

v a f
since x 1is much smaller than for a gas-filled vessel, so the problem

1
is rather complicated.

If we assume the same inertial range for all vessels, the above
equation shows that u s X ,and y /y are inversely proportional one

T 1 v a
to another. For example, in order to match as regards inertial range
a bird (2x = 10 cm and y/y = 500) to an airship (relative density

1 v oa
one) it is necessary for the latter to have ux 500 times larger
f1

than for the bird. we assume that the form factor is 5 times that
for the bird; then 2x must be 100 times larger, so the length is

1

¥ The formula also applies to artillery shells, vessels, and
water animals,
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1000 em, or 10 m. The bird is small, so the resistance of the wings,
as assumed in (5), is not far from the true value.

The little bird and the small model airship are thus of the
same inertial range.

Tf now we replace the bird by an aeroplane of the same form
factor but with a length of 10 m and & y /¥ not less than 80, the

v a

jnertia (inertial range) becomes that of an airship 160 m long.

This is the maximum size for existing airships; their gas

displacement (tonnage for ships) is 20 000 m?. Tt could be that
highly pointed airships could now equal the aeroplane in this re-
spect but the airship has other major advantages, since it requires
no energy to support it in the air.

T therefore assume that the form factor of an aeroplane is S0
1low relative to that of an airship that it is obliged to have wings,
whose shape is such as t©o imply a large additional resistance. In
addition, the small size and far from perfect present shape of the body
also reduce the mean form factor. The relative energy of motion for
the largest (in size) metal airships is not only undoubtedly larger
than that for insects and other flying things; it is also larger
than that for even the best aeroplanes.

The ¥ 7& of the above formuls becomes one if we wish to com-

v

pare water craft one with another or with submarines or aquatic life,
pecause the mean density of the balanced vessel is equal to that of
the surrounding medium. The same applies to airships in vertical
equilibrium at different heights, so in place of (20) we have

k
mv 16
:P=_—'—tl
k

2g 15
F

This shows that the inertial range is independent of the medium
(y =17y ), so this quantity does not appear; this means that the in-
v a
ertial range of a water craft is equal to that of an airship provided
that x and the form factor are the same, in spite of the vast dif-
1



3l

ference in densities as between the media in which they float.

The relative inertia of a steamship is in no way greater than
that of an airship under the same conditions.

But the inertial range of any vessel is proportional to its
size x and form factor u ; the values for large fish and large

1 f
dirigibles are greater than those for small ones or those of less
perfect shape, other things being equal.

The mean density y of a steamship is to be taken as the mass

v
divided by the volume of the underwater pater,

The inertial range of (20) indicates the capacity of a vessel,
missile, or living being to comst a certain distance by virtue of its
speed Vv on account of its inertia. We now examine this more close-
ly. We have seen that the inertial range would express the distance
the body could travel if the resistance were to remain unchanged in
spite of the loss of speed. This is approximately true for a body
moving in accordance with its inertia on a plane in a vacuum, being
subject only to frictional resistance and gravity.

The work done by a vessel in rectilinear motion over a dis-
tance dx is Pdx, in which P 1is the resistance of the medium, or
the force on the vehicle in the direction of motion. On the other hand ,

2
the loss of kinetic energy mV'/2g consequent on & fall in speed dv
caused by the resistance is found by differentiation as

The law of conservation of energy now gives

v
-m-~dv="P - dx . (22)

We eliminate m and P by means of (18) and (19), simplify,
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geparate the variables, integrate, and determine the constant to get

322 ky Iy lef
f == " = ufxlln&v). (23)

Here v 1is the initial velocity and ¥ the final one, the
1

logarithm being the natural one.
consider motion to rest, namely V = 0, then X = ®  so the body
travels an infinite distance and hence never stops.
The formula Shows that the distance traveled is constant for
g given vl v, no matter what the absolute values of the speeds; but

it is directly proportional to the relative inertia (inertial range)
of the vessel [see (201)1.

In other words, the vehicle travels the same distance while
losing & given fraction of its initial (large or small) speed; but
this is directly proportional to the size of the body, to 7 /7 » and

v &
to the form factor.

This distence 1is also independent of the absolute density of the
medium, being governed solely by the ratio of this to the mean density
of the vessel. For instance, & water craft and an airship travel
equal distances while losing (say) half their inertial speed, if con-
ditions are the same for both. We have y =7 for steamships, fish,

v a
and airships, because the mean density is that of the medium. Then
we have from (23) for these that

®

32 ky TN
x = ——ux, In\¥ /" 24
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For instance, k /k = 1, u =50, x =100 m, and v /v = 23
u F f 1 1
the last denotes loss of half of the initial (arbitrary) speed v ,
1

This gives x = 7392 m, or about T versts.

The calculations relgte to an airship carrying 200 bassengers
or to & seagoing steamship of the same size. The conditions of the
above are fairly ideal; +the above are the worst conditions: k =

u
=0.7, k =1.b, u =14 and x = 50 (airship for 10 men, dis-
F f
placement 6000 mB); for v /v = 2 we have x = 517 m (range of 1/2 &
1
verst ).

The vessel retains 1/2 its initial speed (say, 10 m/sec) after
covering this distance; then it can cover the same distance (500 m)
#hile retaining half again (5 m/sec), as (23) and (24) show.

But the motion bec omes ever slower and ultimately inappreciabile,

in which t 1is time in seconds reckoned from the instance when the
vehicle had g speed v ,
1
We use (22) to eliminate dx and integrate to get

t=2.ﬁz.h.&f.x(ﬂ-1). (26)
15 kF 7& V1 v

The time taken to reach a given V'/Q'is thus proportional
1
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to u Xiy./y (inertial range, whether it be & vessel, airship, steam-
flv &
ship, glider, bird, fish, insect, artillery missile, and so on) and
is inversely proportional to v ; no matter what v may be, the time
1 1
increases as V (or the final speed ) decreases, becoming infinite
when v is zero (total loss of speed ).

Total stoppage thus takes theoretically an infinite time.

This treatment is true only in so far as the law of resistance
used is correct (resistance proportional to the square of the speed),
which cannot be taken as rigorously so; hence the conclusion is only
a rough picture of the actual effects.

But the picture is the more nearly correct the closer the
final speed v 1is to the initial speed v .

1

C. Relative Resistance, Specific Surface,
and Specific Volume

Some calculations to elucidate the controllability of an air-
ship appear in order here.
First we find the area of the largest cross-section of the

shell per passenger.
The total ares of the projection of the vessel on the plane of
the cross-section is denoted by F , @as before, This 1is

F myk
=

But the good shape of the vegsel means that this expression
does not give us the resistance; F must be divided by the form
P
factor u , which gives us the area equivalent to the resistance (at
T
the same speed, of course):
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F
F
2. 5. (27)
u u
f £

The weight of the passengers is & fraction k of the up-

1Y
thrust  [see (10)]; let g be the weight of a passenger, so the
1Y
number is
Qk.
H=]-—+ (28)
q
D
and the resistance area per passenger is, from (7) and (10),
15k
F. o F F
|2 = | p’p _ YD ' (30)
- 16k - X *u +*k
Huf qukp U (7a 7g) L £ D

This shows that the equivalent specific resistance area varies

in inverse proportion to x , to u , and to the difference between
1 f

y and y .
a g

The latter would appear to show that rarefaction of the medium
is unfavorable, but this is not so. It is true that this specific
area increases as the air becomes more rarefied, but the absolute re-
sistance (the actual force) remains unchanged, because the rarefied
medium has a lower resistance,

First I take ideal conditions for use in (30): kF/k =1,

u
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g =100kg, k =0.1, vy -7 = 0.001 t/mB, x =100 m, and u = 50.

P b a g 1 kil
Then the relative resistance area (in the form of a plane) is

2
0.19 m . This appears to be a paradox; how can the force on & part
of the airship and on the whole man be less than that on the surface

area of his body, which is several times larger than 0.19 m2! The
fact is that the passengers are enclosed in & gondola, whose shape
is such that its resistance is quite small and in no case€ equal to the
resistance of the human bodies it encloses. This shows why the sur-
face area of the men is not involved.

The resistance area is even 1less for my largest metal airships,

2

being about 0.019 m per man, which is the area of a square plate of
side less than 14 cm, This is & plate not larger than the palms of the
hands.

Now I take a very unfavorable basis for determining the speci-
fic resistance from (30): kF =1.k, x =0.T,q =100,y -7 =

a

u P g
_0.001, x =50m u =14, and k =0.1. This gives .68 m® for the

1 f P
resistance area, which is fairly substantial. The result for the

largest airship is 0.134 m?, or about L/8 m?. In any case, given &
vessel of sufficient size and perfection, the specific resistance area
represents less resistance than does the human body not enclosed in

a gondola.

This means that, if the passengers were obliged to produce all
the power needed to produce the forward motion of the vessel they are
flying in, they would have to produce much less energy than that
needed to move with the same speed in the same medium independently
("by themselves, on their two legs").

In this motion of the man T neglect any resistance other than
that of the air.

This can also be put as follows: if a man were to lose his
weight, then on moving in air as does & bird (or as does a fish in
water) he would have to produce far more energy to overcome the air
resistance than is needed while moving at the same speed under normal
conditions in the closed gondola of & properly constructed airship.

We also need the resistance area per hp (per T5 kg-m).

From (7), (10), and (15) we have
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F

P 1125 kg | .
— :p = (;zg_ . £%> : {ukoEn Xl(ya - 7g)}. (31)
u U

T

Then we can also say that the resistance area as a ratio to the
motor power is inversely proportional to the motor energy E or to
n
the number of kg-m per sec they produce rer kg of their weight.
3
Weput k /k =1,y -y =0.001t/m, x =100m, u = 50,
F u a g 1 T
k =0,1, and E = 25,
m n
Then an airship equal in length to an ocean-going steamship
2 2x
gives, for ideal shape, (P‘/u ): p = 0.005625 m , or about 56.2 cm ,
p T
which is the area of a square of side [less than 8 cm, or less than
the ares of the palm of the hand]. The horsepower equivalent to
this small area may give it the high speed calculated above, of
course,
The specific area comes out 10 times smaller for the largest

D%
metal airships, being 5.6 ecm , which is the area of a square of side
less than 2.4 cm*,

For the unfavorable circumstances of an airship of displacement

3
6000 m we put

. L 3
p = 253 x =505 7 y = 0.001 [t/m”].

=
|

*¥Slips of the author's have been corrected; these overestimated
the air resistance by a factor 10.
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2
Then the formula gives 0.08 m for the specific resistance area,
2
while for the largest metal dirigibles it is 0.004 m , which is
equivalent to a square of side 0.063 m, or 6.3 cm.

It would seem that the specific resistance area per horsepower
for an average airship under ordinary conditions is slightly more¥
than the resistance of a clothed man.

Now consider the resistance of the surface of the gasholder
per passenger or per unit work of the engines. The friction on the
shell in a properly designed airship will be about half the total
resistance of the shell (or about 1/4 of the total resistance of
the vessel).

The specific surface area thus expresses the resistance of
the airship. The surface area of the shell is

8 > ¥
- TTy X k (l + -, '%‘) ) (32)
3 11a > x

in which k 1is a correction coefficient close to one. Dividing this
a
area by the number of passengers as given by (13 ) and (10), we have
1

5 k 75 PIRLNEEN 1
— . & s — (1 ¥ - _%_ /) . (33)
2 kU 5 x| (7a - 7g)yl

*Much less.
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This shows that the relative area 1is inversely proportional to
the size (y ) and to the density of the medium.

1
We put: k/k =1,k =1/8, y/x =11,y -y =0.001 o/n,
& u m 11 a g
and y = T mto get the specific surface area as 216 m? (the area of
1

a square of side 14.7 m, or sbout T sajene).

This surface experiences friction on one side only. If we pic-
ture this area as that of a plane moving along its length and subject
to friction on both sides, we get roughly the total resistance of the
shell (because this is twice the friction alone); but we should not
forget that such a gurface taken alone has more resistance than it
does when it forms part of the whole shell.

This surface area is 50 times smaller for the largest airships

2

and so 1s about 10.8 m , the area of a square of side 3,3 m, which

is not very great.

Alternatively, we can represent this area &s that of a cube,
whose side is given by (33) as of length about

| =

™

12k -
U(7a

This gives us 6 m for an ord
largest. The area is thus comparab
first case, while in the second it

) : (34
7g yl

inary airship and 1.34 m for the
le with that of a high room in the
is not sufficient for the surface

of a closed carriage. This shows that the specific surface of the

shell is small, as well as the resi
We divide the surface area O

gtance being low.
£ (%2) by the power of the en-

gines as given by (10) and (15) to get
5 k 2Y?L
a <? + - -—{)
- = 7 ): {kEy (r -7 )} (35)
2 k > % Mnl & 8

[on]
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Teking E = 20, and otherwise the same conditions, we have for
o P
an airship of displacement 6000 m that per km-m of work* there is

2 2

1/7m of surface area, or 10.8 m per steam horsepower (75 kg-m).
The friction on guch an area is VEry slight, so it is clear why &an
airship can move with a high independent speed. The area falls to

2

0.3% m per steanm horsepower for the largest size of airship.

The volume of iight gas per passenger is found from the above
as

_n . (36)

(y -7 )k
8 g M

This shows that the specific volume is not dependent on the
gize of the airship, being governed solely by the weight (75 kg) of
s passenger, by the density difference 7 = 7 » and by the passenger
a g
coefficient k (= k ).
P m 3
Ve put k =1/8and y -y =0.001 t/u’ to find the specific
m a g
volume as 600 n (volume of & cube of side 8.43 m). The giant airship
has no advantage over midget dirigibles in this respect.

¥Power,
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XV. HEATING OF LIGHT GAS AND ADJUSTMENT OF LIFT#*

1. This question of heating the light gas is very complicated;
no exact theoretical solution is really possible in the present state
of the art.

The combustion products from the motors are sent through a
black pipe located within the shell and surrounded by the light gas
(the heating pipe is now supposed to lie at the bottom, but this
hardly alters the results).

The gaseous combustion products may be very hot (up to 500°¢)
if they are not mixed with air. This heat they give up to the black
Pipe, but its temperature is far from being the same at sll points.

At the inlet it reaches nearly the temperature of the combustion
products (500°C), but the temperature steadily falls towards the outlet.
It is very difficult to account for the heat transferred to the gas by
the various parts of the pipe.

The pipe must be made of g suitable material, of course (e.g.,
copper), and the wall thickness should be appropriate to the tempera-
ture. The pipe is best made to be of maximal radiative power; the
state of the surface has a marked effect on this. For instance, it
is good for the surface to be matt and black. Part of the heat from
the combustion products is transferred to the light gas, and this
part 1s the larger the higher the initial temperature of the combus-
tion products; but the light gas will not have the same temperature
in all parts of the shell.

The shell's temperature will also vary from part to part and
will not be equal to the mean gas temperature. The composition of the
gas 1s important, as are any contaminants such as dust, smoke, water
vapor, or water wmist. OFf course, these contaminants may not be
present, and this might even be better; but I believe that the mist
and smoke in the Mongolfier balloons tended to retard the loss of
heat from them and so tended to extend their time of flight, although
they damaged the spheres.

Radiative cooling of the Earth is retarded by the clouds, so
smoke and mist within the shell should tend to retain the heat in the
airship.

The heat of the shell is transferred to the air; here the
surface state of the shell is Important, as is the opposing airstream

*Power.
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when the airship is in motion.

The wind affects the cooling when the airship is at rest; the
air temperature, sunshine, cloud cover, atmospheric transparency,
height of the locality, and so on, all affect the heat loss.

The conditions are clearly complicated, but I shall make an
attempt to derive an approximate solution for the heating of the air-
ship by the combustion products.

The power of the engines is given by the usual formula; the
equivalent quantity of heat is

in which the factor Me is the mechanical equivalent of heat, a is the

density difference (between air and gas), U is the volume of the gas,
km is the part of the upthrust assigned to the motors, and En is the

energy produced per unit mass per second.
Let u be the fraction of the heat from the fuel that is con-
m

verted into mechanical work by the motors; the total heat from the
fuel is

alk E
mn

Mgty

The amount of heat entering the black pipe is

E
w2 (D).
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Not all of this heat 1s taken up by the light gas; only a part
uy is, because the gases escape from the pipe into the atmosphere at

a temperature above that of the surrounding air.
The heat reaching the contents of the airship is thus

Y 71
aUKkE » —(— -1).
mn Me u?n

2. The amount of heat escaping with the gas into the atmosphere
is dependent on the surface area S of the black pipe, on the tempera-
ture tl of the combustion products, on the flow speed and amount of

these, on the state of the surface of the pipe, and on the surrounding

gas.
The heat lost by a hot body (temperature tl) in unit time to a

surrounding medium at temperature tg can be deduced from various formu-

las and studies. A very small temperature difference (10-20°) allows
us to use Newton's formula (rate of loss of heat proportional to tem-
perature difference).

This law can be applied to the cooling of the shell in the
alr, because the shell will only be slightly heated relative to the
air.

In all cases it is assumed that the heat loss is roughly pro-
portional to the surface area S, although the shape of the body also
has an effect, strictly speaking.

Newton's law then gives us for the loss of heat per unit time

kS (t, - %),

in which K 1s dependent on the state of the surface and on the proper-
ties of the surrounding medium. This K itself has two parts: one
arising from radiation (this is more dependent on the state of the
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surface) and the other from loss by conduction and convection (this
is more dependent on the properties and motion of the surrounding

medium) .
The first (according to Péclet) is Kl = 0.000000588 for a

tinned surface; it is very small for polished metal surfaces general-
ly, but is 15 times larger for rusty iron, for example (0.0000089;
second, dme).

Walerius gives the other as K, = 0.000009, not more (for a body

placed with an atmosphere outside it). This shows that the first is
10 times less than the second for polished surfaces, but the two be-
come comparable for black surfaces.

K is thus not more than 0.00001 for unpolished surfaces.

The cooling rate of the shell is thus

0.0018 (t, - t,),

in large calories per sec if S is in m2.

3. This formula is in no case applicable to the black pipe,

because K increases rapidly with temperature.
Dulong and Petit's law can be applied for temperature differ-
ences up to 300°%; this expresses the heat lost by unit surface as

t t 1.2
a (b o b 2) + c (tl - t2) 33.

The first term relates to radiative loss, with b = 1.0077 al-
ways but a dependent on the state of the surface. The second term
relates to heat lost by contact with the medium and has no factor
affected by the state of the surface.

L. The first term can be neglected for highly polished metal
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surfaces and not very large temperature differences; the heat loss is
then that of a body in the open air:

1.233
0.001 (t. - t.) .
1 2

This formula 1s more accurate than Newton's; some (Lorentz,
Tereschin) have even used

1.25

0.001 (t1 - t2) ,

which is not very different.

5. These simplified formulas cannot be applied to black sur-
faces, or at high temperatures (above 300°C), especially when the two
occur together, because the radiative loss becomes large and even ex-
ceeds the loss from other causes.

The ratio of the radiative loss to the other losses 1is given

by (3) as

% %
1 2
a(db -b7)
1.233
c (tl - t2)
Here a = 0.1445, b = 1.0077, ¢ = 0.0009, For a black surface
(e.g., scaled iron) with t, = 300°C and t, = 0°C we have the ratio

(using the Péclet and Walerius coefficients) as 1.4, so the radiative
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loss is rather more than the other losses.
Here we may replace the previous formula by the following one
for convenience in comparing the two forms of loss:

Temperature tg has been taken as ZEro; then tl = 1 gives the

ratio as 1.24 (losses nearly equal).

Other values are as follows: 100°C 0.635, 10°C 0.76, 50°C 0.61,
and 600°C 6.1.

This shows that the radiative loss from a black surface is the
dominant loss for small temperature differences; it then becomes rela-
tively smaller but later rises: to L.l at 300°C, and subsequently
indefinitely. Draper found that Dulong and Petit's formula is quite
incorrect at high temperatures (above 800°C), and it is good only for
temperatures up to 300°C.

6. I propose a formula that is not only simple but that ap-
pears also to be most probable.
This is Stefan's law for radiative heat loss:

L L
a (Tl - TE),

U1Mﬁd1Tisahmhﬁetmmaﬁmwa
This formula was supplemented by Lorentz [see (U4) and (5)1:

y1-25

M

L 4
a (Tl - TE) +cC (Tl - T2
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in which the second term represents loss by conduction and convection.
Stefan's formula gives a very likely temperature for the surface of
the Sun and for the mean temperature of the Earth.

Boltzmann has given a theoretical derivation of Stefan's law.

Stefan and Christiansen found that a = 12 x 10 2 (sec, e

2

kcal).

T. The ratio of radiative loss to other losses is

L 4
a (Tl - TQ)
1.25
c ('I‘l - T2)

8 .

8. afc = 1.22 x 10 ; the ratio is 0.532 for T, =273 + 100°
and T, = 273°, which is almost as from (5) (Dulong and Petit's formu-
la). The result for a temperature difference of 300% is 1.00, which
is also close to the result from Dulong and Petit's formula. For
T1 = 873° and T2 = 273° (600° difference) the ratio is 2.35, which is

much less than the 6.1 given by their formula.

9. The above ratio may be put as follows for temperature dif-
ferences exceeding 500°:

L
a T1
c 1.25
(Tl - Te)

Comparison of Dulong and Petit's formula with Stefan and Iorentz's

L AT



361

formula shows that the latter formula indicates less loss than the
first for high temperatures; this agrees with Draper's measurements.
The Stefan-Lorentz formula is therefore preferable for high tempera-
tures.

10.  The heat lost per second in kcal may be taken as 0.002S
1.25

.25
t -t or S(t -t if the pipe has a temperature between
(¢, - t) RSt - t) pip p .
0 and 400 to 450°C, in which Kh is the heat-transfer factor, S is sur-

face area in m?, and tl is in °C (first formula). In fact, I have

taken the two forms of loss as being equal at some temperatures,
which is true for O and 300°C.

/” |

& —

o°19° 50° 199° 700° 400° 600°

Fig. 1

Radiation by a black surface: 1) true (Lorentz);
2) assumed here and in accordance with loss by
conduction and convection.
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The radiative loss 1s the smaller between these two tempera-
tures, so the simplified formula gives a larger number of heat units;
but above 300°C this formula gives a value lower than the true one,
so the errors in part balance out.

Fig. 1 shows that the areas under the curves are nearly equal
if the maximum temperature of the combustion products is 4oo°C.

11. Then for the polished surface of the shell, neglecting

1.2
radiation, we have O.OOlS(tl - t2) 5, with twice this for the black

pipe. This gives the heat lost (kcal) in time T (sec) from a surface
2
S (m).

12. Fig. 2 indicates the symbols used in the deduction of the
fall in temperature along the black pipe.

The differential for the loss in a length 4L for a pipe of
radius r is

2 . dIeydt = 2 arKk, (t t)l'25
e - ydt = 2nr LK, -ty aT,

in which ¢ is the mean thermal capacity of the combustion products,
whose density is d; t is the temperature at a point on the pipe, t5

is the temperature of the light gas, and T is the time from the start

of the motion of the combustion products in the pipe [see (11)]. The
variables are separated and the equation is integrated to give

+ const = T.

We have t = tl for T = 0, so this gives us the constant; then
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Fig. 2

13. With 7 = Tl we have t = t2, in which Tl is the time at

which the gases escape from the end of the pipe and t2 is the tempera-

ture at which they leave.
Now

50

tgz{l:CTlKh+ - )h}+t3-
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This gives us t2 (temperature of escaping combustion products)
if we know the initial temperature tl, the temperature t3 of the light
gas, and the transit time Tl of the products.

This time is now considered.

14*, We have seen in (1) that the amount of heat brought into
the black pipe per second is

1
(au) kmEn (a; - 1) M,

or, from (13) of Chapter XIV,

67 1 o
i;ﬁ- (ﬁ; - 1) Kokp@Epy1¥) = 4-
e

15. On the other hand, this quantity q is equal to the volume
Ué of the products leaving the motors per unit time multiplied by the

specific heat ¢ of these, and also by the density y and temperature
difference tl - th’ in which th is the air temperature; then

= t. - .
q U?C? ( 1 tu)

These last two equations readily give the volume of products
per second; the time of transit through the pipe is
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mr L
1 v’

namely the volume of the pipe divided by the volume of the products.
We put L = 2x1 to get from these equations that

Mcy (t, - ty,)
. -, _e 1 4 i (31)2_

1 Y1
Ky (ﬁa - 1) B

16. We eliminate L from (3) to get

_ . 15M (tl - tu) L 1 L
’ {l ' [l6kukmaEn (L - 1) y? i 4 ] } "l

17. The temperature t5 of the light gas is essentially un-
known, but it can be deduced. Our formula is applicable to the case
in which t_ differs little from t), (temperature of outside air), and

b)
we can put that t3 = th'

It is also applicable when the black pipe is in the open air.
The basis for the equation for t5 is that the heat loss from the black
pipe in the steady state is equal to the heat loss from the surface
of the shell. The latter can be found if we know the surface tempera-
ture, but this is far from being t., being much less. For example,
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my experiments of about 1890 (on the cooling of a polished vessel in
a room, with heat supplied at the center, as in an airship) gave a

coefficient of 1/3000 for 1 w in a second.

On the other hand, the formulas given here imply (a denominator)
about half this (1/1500 for closed buildings, or 0.001 for an open
space) .

This implies that the temperature difference between shell
and air even in my experiments with the small model (20-30 cm; I can-
not remember exactly) was half the mean temperature difference be-
tween the internal gas and the air.

of course, the parts of the gas near the hot tube in a large
airship will be at a much higher temperature than pargs near the cold
shell, and the temperature of these latter will be much less than the
mean temperature t5 of the gas.

I therefore take the heat-loss coefficient for the shell as
Kﬁ/n, in which n-is a fairly large number available only from experi-

ment. For example, my calculations on the old-fashioned Monigolfier
balloons show that even here the heat loss from the dark surface was
only half that in my experiments with a polished surface. Therefore
n > 8, at least.

18. The heat lost by the polished surface of the shell is
then

Kp ~ 1.25
(aAlka) (‘E) (t5 = t’-l-) >

in which Kh is the normal heat-loss coefficient for a polished surface,
as in (10); t5 is the mean temperature of the light gas, and EAlka is
the surface area of the shell.

19. Now I turn to the heat lost by the black pipe. The

smount of heat given by the pipe is known from (1) and (%), in which
Uy is the proportion transferred to the interior of the balloon,
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which is

in which the numerator is the change in temperature of the combustion
products escaping from the pipe and the denominator is the excess
temperature (sbove the air temperature) of the gases entering the

black pipe.

20. This means that the equation we need is

X E
1.2
h n ,.1 (: 1 2 )
= (t, - % = — (= -1 k.
on k2 ( ) aUMe(ut )\t m
We eliminate 2Al, al, and tg to find that
1.25 1
(tzx = ) :B{t-t , },
3 h 1 3 (: 1 N
A+ )
J_l_ -,
J t1 -~t5

in which
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and

15 - KM (tl - tu)

A:

1 o
16 . kukmaEn (5; 1) ]

21, It is now simple to deduce t5 if the sizes of shell and
black pipe are known; and with t5 we can deduce t2 from section 16
(this is the temperature of the products leaving the black pipe).

22. We calculate A and B for n = 10 (because the present air-
ships are larger than the Montgolfier balloons); t)+ = 0, tl = hLoo,

w, = 0.1, ku/ka =1, k =0.01 (which means that the motors account
for only a hundredth part of the upthrust aU), a = 0.001 kg/de,
Kh = 0.001 (per m? per sec, half that for the black pipe), En = 25
2 2
kg-m/kg, y. = 15m, (L+ 2y /5x.) =1, M = 4lh k =1, r =25 cm,
1 I 1 e u
and K, = 0.002 (for a black surface, as in section 10).
Then A = 0.157 and B = 0.7960.

23. From (21) we have

B

e )"
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2k, To determine t5 roughly I assume that the heat lost by
the shell is proportional to t3 - th; then from (16)-(21), discarding

the power 1.25, we have

B it L t
1 1 + L
A+
O
1 -
t. = : E .
3 1+ B

The quantity under the root sign is only very slightly depend-
ent on t_, so we can put t_ = th’ provided, of course, that tl is

3

large relative to t,.

3

For example, if we assume that th (air temperature) is zero,

we have t, = 160°C; inserting this in the exact formula of (23), we

3

get t5 = 62°C. Proceeding in the same way with 62°C, we get t5 =

= 78.27°C. The fourth approximation gives t3 = 75.86°C, so the mean
temperature of the light gas is about T6°C.

25. We halve the radius of the pipe to give r = 12.5 cm
(er = 25 cm), so A = 0.0785 and B = 0.79, from (22). A rough esti-
mate of t3 may be made by using the exact formula with t3 = 76°C in
the second part, because the surface area of the plpe does not have a
very great effect on the gas temperature if this area is not changed
too greatly. This gives t5 = 62°C.

The third approximation is t5 = 64.5°C, so we can take 63-64°C
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as being quite adequate for practical purposes.

26. We have used %), = 0° in the above calculations, in which

case (23) is replaced by

27. TFormula (16) provided us with tg’ the temperature of the

gases leaving the pipe. Using (20), we put (16) as

t2={1:<A+ —i——)h}+ -

lytl ) t;

The conditions of (24) give us roughly that b, 39 + t5 =

115°C, while for the pipe 2 times narrower we have t = 106 + t_ =
170°C. 2

U

28. We have from (23) with tl+ = 0 that
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o5 = (

B Ly
1+ Bj> . {Fl ) (} ¥ 1 :f} ’
b tl - t5

which shows that t5 increases with A (i.e., as 1, Kh, and r increase)
and with B (as K, decreases), as in (20).

The relation of t3 to the other independent variables is not
explicit. A will be large if kmEn is small and tl is large, so the

factor within the braces can be neglected.
Then we have in place of the above that

B (t; + t))
by = ——— >

5 1+ 3B

which shows that t5 increases in proportion to tl and also with B

(i.e., as k E and ¥y increase); the increase in T with y. (height
mn 1 3 1

of shell) is particularly worthy of attention.

og%, The temperature regulator provides ad justment of the
temperature of the light gas between t3 and th; t5 can be much higher

than the values calculated above, because we assigned only 1% of the
over-all upthrust to the motors. The gas temperature can readily reach
100°C or more [see (28)] if this proportion is increased; as regards
the temperature of the combustion products, the pipe can be made
narrower as this temperature rises, and so the limits of temperature
variation for a given motor pOwer are made wider.
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The principal reason for heating the gas 1s to alter the up-
thrust of the airship.

The relative change in this is the ratio of the volumes of a
fixed mass of gas at temperatures t. and th’ namely

3

eT3+ 1), T,
275 + t5 Ty

For instance, if t) = 27°C and t3 = 127°C, we have Th:T5 =
= 0.75, which means that the lift of the cooled airship is only 3/4
of that of the airship with the gas heated (reduction by a quarter
of the initial value).

These calculations seem to me to show that a difference
t3 - th of 100°C across the shell could be readily maintained. This

has the very important practical consequence that the airship can set
down a load equal to 1/4 of the total upthrust Uya while retaining

its equilibrium and even descending if necessary.
One quarter of the total upthrust Uya is about 3 times the

total weight of all the passengers.

More precisely, it is larger by a factor 1/Lk (1 - 7g/7 ),
because p a

Putting
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we have 2 + 8/11. The airship can descend to the ground, discharge
all the passengers plus a cargo twice their weight, and go on its way
empty. Then it arrives in some city, takes on a full complement of
passengers and a vast cargo, and then continues on its way without
need to top up with gas.

50. Another reason for adjusting the upthrust is to provide
means of rapid or slow ascent or descent without loss of gas or
ballast, and also to avoid meteorological disturbances that could up-
set the vertical equilibrium.

For instance, the heating of a black shell by the Sun's rays
could (under favorable conditions) increase the upthrust by L/lO of
the initial value. This mighty effect of the sun can be avoided only
by altering the upthrust via an opposing change in the temperature of
the light gas, namely reduction by means of the regulator.

I neglect here the methods of releasing gas or ballast, for
these cannot long serve the purpose.

51. The change in upthrust is governed by the temperature
change of the light gas. For a fixed air temperature,

For instance, consider a gas temperature Tg = 300° and dTg = 1°;
then the change dQ will be 1/300 of the initial upthrust Qi' This
means & change of 1 ton in response to 1°C change if the upthrust is
300 tons, so each degree rise enables the vessel to take on 10-15

more passengers, and conversely.

52. Further advantages are that the heated gas is drier and
less dense (less mass for the same volume), and so is cheaper.

33. Of course, the upthrust will be larger, since the gas is
also more readily heated.
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zl,, The heating of the gas and shell warm up the whole air-
ship, which tends to keep dry and not to rust; for the same reasol,
snow falling on it will melt and trickle away, and SO will not reduce
the upthrust appreciably, even in cold polar countries.

35, Also, the slow motion of snow in conjunction with the fast
forward motion of the airship will mean that the relative motion of
the snow is nearly horizontal, so in the 1imit the amount of snow
striking the shell will ve reduced (relative to that with the ship
at rest) in the ratio of the transverse cross-sectional area to the
lengthwise one (namely, by about a factor seven for a given elonga-
tion of the shell).

Alteration of the upthrust can also provide forward motion
with the airship in an inclined position.

36. Now I consider the time needed to cool or heat the air-
ship sufficiently; if this is too large, the method (of heating the
gas to adjust the upthru.st) cannot be considered satisfactory.

Section 1 gives the heat received by the gas from the black
pipe when the inflow and outflow of heat have come to equilibrium:

alk E u (}l— - #) A
mn t ut e

The airship loses this amont of heat through its shell in the
same time.
To heat the entire mass of gas through 1°C requires

[

in which 7g is the density and cp is the specific heatb at constant
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Pressure. We can take 7gc as roughly constant for any gas that may
P
fill the shell, so we may say that the result will be the same whether

it is filled with air or pure hydrogen.
In one second the gas is heated or cooled by

ak E 1
e ()

Myec % u -1
egp

m

We assume that the loss or gain of heat is proportional to time
during this unit time.
We know u, (proportion of heat taken from black pipe) is known

from (19) as

37. Here we put a = 0.001, k =0.01, E =25 kg-m/sec, M, =

= hol xg-m/keal, 7, = 0.0012, c = 0.24, u = 0.1, t. = koo°c, t), =0,

1
and t2 = 170°C (black pipe 25 cm in diameter; see sections 25 and 27);
then
23
u, = =
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The change in a second is thus 0.01057°C, or in a minute
0.6342°C. Heat loss from the shell has the same effect.

33, The rise in unit time will be greater than that calculated
if the airship is still cold, because the loss of heat from the shell
will be negligible, since its temperature is close to that of the
air. We may therefore take t3 (gas temperature) as 64°C, since the

heating to about t5/2 will be roughly proportional to time, and the

rige in T minutes will thus be 0.6T°C.

This formula may also be used to express the cooling of the
shell. More exact calculations could be performed, but the work in-
volves numerous formulas, and it 1s sufficient here merely to have a
general conception of the rates of heating and cooling.

39. The above sectlons indicate how long is needed to heat
the 1light gas through 27°C; 0.67 = 27, so T = 45 min.

This means that not less than 45 min would be needed for the
heated airship to cool by 27°C after the hot gas has ceased to pass
through the black pipe. This cooling will be accompanied by loss of
0.1 of the initial upthrust, in accordance with (31).

It needs 5/h hr to cool the shell after the temperature regu-
lator has shut off in order to set down all the passengers and cargo;
also, to take on a full complement of passengers after this needs not
less than 45 min in order to heat the light gas via the black pipe.

Lo. But these times are not to be reckoned as unalterable;
they can be greatly reduced, for (36) shows that the heat loss or
heating per unit time is governed by k E_, i.e., by the power of the
airship's engines. m n

If, for example, the motors are assigned (for the same energy)
not 1% of the total upthrust but 10% (k, = 0.1), we have a heating

coefficient 10 times larger, which means that the rise in temperature
in a minute can be 6°C. The takeoff thus requires not 45 min but
4-1/2 min, which is almost instantaneous. Heating of quite adequate
rate would be provided by increasing the power of the motors by only
s factor three, for then the heating time for 27°C change would be
only L/L hr.

The heating coefficient of (36) is not dependent on the size
of the airship; no matter how large the airship may be, the heating
(heating rate) is not thereby reduced.
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o, ELEMENTARY DESIGN OF A METAL DIRIGIBLE *

I. seription of the drawings

De P

The drawings are schematic, 1.€., the scale may Vvary even in
the same drawing.

Fig. 1. This figure depicts the metal envelope of the
dirigible in the flattened state. It has not yet been filled with
gas and is suspended by chains in a special dock. It has the shape
of & flat-bottomed boat stood on edge, with the deck covered over.
The sides of the dirigible, consisting of corrugated iron sheet, are
fitted with vertical, flexible, but comparatively ma.ssive bands,
which also serve as & means of copnecting the lateral corrugated -
metal trapezoids. The top and bottom of the envelope€ consist of
long, narrow curved surfaces reinforced by massive cross members and
flexible Jongitudinal beams. The ends of the envelope, 1.€., the
stern and the bow, are square.

Fig. 1.

*191k.
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The curved lines running fore and aft indicate the half-cylin-
ders that cover the articulated joints,

Fig. 2. The same envelope, but in the inflated state, 7In
its natural form it is the same shape as a giant spindle. The
blunting of the ends is discernible only at close range,

]

Fig. 3. Transverse vertical section through the uninflated
envelope,

Fig. k. Same, through inflated envelope,

22\
3y
~

Fig, 3,




379

Fig. L, Fig. 5.

Fig. 5. ©Same, but with air inside envelope evacusted, It is
in this form that the envelope is filled with gas.

In all of these drawings (Figures 3, 4, 5), the black dots in-
dicate an articulated joint between the sides and the top and bottom
of the envelope; the incomplete circles, on the other hand, re-
present sections through the tubes that cover these Jjoints and thus
prevent the gas from leaking out.

milledl BN e

Fig. 6. Fig. 7.

In the case of real envelopes, these tubes will not be

visible at a distance.
Figures 3 and 5 then assume the form of two vertical vanels

with an almost imperceptible gap between them, while Figure k4

appears like a smooth circle.
Fig. 9 shows the articulated joint between the corrugated
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side panels and the t
Figures 6, T,

op or bottom.
and 8 show the principal elements of the metal

envelope of the dirigible.

The leaves of the hinge (

methods, in unlimited
depends on the size ©

Fig. 8.

Figures 6 and 7) are made by factory
lengths and 1in standard form. Their thickness

f the envelope.
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The part shown in Fig. 6 is in contact with the narrow strip

at top or bottom, and the part shown in Tig. 7 is in contact with the
corrugated side wall; for this reason it heg a corrugated cross
section into which the corruga

ted side wall (Fig. 8) or a part of it
-- a trapezoidal panel -- fits.

Fig. 10.

Fig. 10. Cross section through an articulated joint covered
by & gestight flexible tube.

Fig. 12.

Fig. 11. Transverse vertical section through an elementary
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type of dirigible. The gondola is attached at the bottom.

The envelope is held under tension by & block and tackle
system to stabilize the longitudinal axis in a horizontal position.

Fig. 12. Safety wvalve in the bottom of the envelope ~- in
the gondola. Gas from the envelope fills the broad tube on the
left,

If the pressure exceeds the norm, then the gas will 1ift the
slide valve, like a stove damper, and the valve flange will rise out
of the liquid filling the annular channel so that the gas can escape
freely, thus reducing the excess pressure inside the envelope. The
action of the valve is facilitated by rollers,

Fig. 13. This drawing is a graphic illustration of how the
gas tempersture inside the envelope is changed, It shows the tem-
perature regulator.

al/

The combustion products from the dirigible's engines are
directed into a pipe, whence one fraction is conveyed through the
interior of the envelope in a black metal tube, heating the light-
weight gas inside the envelope, and the envelope itself, in the
process, and is then vented to the outside. The remaining fraction
is directed into an exhaust Pipe and vented directly into the at-
mosphere.

The manually operated slide valve controls the amount of gas
flowing in either direction by covering and uncovering the openings

L I

R
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leading to the black tube and the exhaust pipe, respectively.

The two openings are ususlly partially covered, SO that a
certain average temperature, say 30°C, is constantly maintained
inside the envelope; by moving the valve one way or the other,
this temperature can be reduced to zero (the temperature of the
air) or raised to 60°C.

Fig. 14*. The metal dirigible and its principal components.
Only a portion of the corrugated metal surface 1s shown. Most of it
has been cut away.

Tnside the envelope we se€€ the pulley tensioning system de-
signed to insure the stability of the longitudinal axis of the
dirigible.

Beneath this, in the bottom of the envelope, we note the two
pblack tubes leading from the gondola engine, through the temperature
regulator (Fig. 13), and forming a duct for the hot combustion
products.

The tubes begin at either end of the gondola, where the
engines are located; the propellers are also found here. The out-
lets of the black tubes are at either extremity of the envelope.

The two tubes make 1t possible to control the buoyancy of the two
halves of the envelope independently. This is a highly efficient
means of restoring the horizontality of the longitudinal axis of the
dirigible. The temperature difference between the front and rear
sections of the envelope is also due to the presence of a light, but
strong and flexible transverse diaphragm (with a rhombic mesh) in-
dicated by the broken line. It need not necessarily be rubberized
and may allow the g&s to pass, but only very slowly. This is the
only inflammable part of the dirigible; it can not burn in hydrogen,
of course; in any case it is not an absolute necessity.

On the left-hand side of the gondola we find the control
surfaces: & horizontal control surface (a distorted rhomb ) and a
vertical one. The total area of the control surfaces must be large
enough to include the stabilizers.

A non-reacting passive stabilizer, such as a rudder or &
bird's tail, for changing the direction of the dirigible would be
s burden; it would be 10 times less efficient in restoring the
trim or proper direction of the dirigible than rapid-acting auto-
matic control surfaces of the same areé.

This is why I am against rixed stabilizers¥.

What are the advantages of this design”?

Block-and -tackle tensioning at various points along the gondole
will compress the gas and insure & stable longitudinal axis. Tension-
ing at one end combined with relaxation at the other will £11t the
longitudinal axis, Or make it possible to restore a tilted axis to
the horizontal. The same effect can be achieved much more easily by
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means of the two temperature regulators (Fig. 13).

<> & <~

o
==/

Fig. 15.

Pulling the middle of the diaphragm in one direction or the
other may serve the same purpose,

The temperature regulators operating simultaneously and in
combination enable the dirigible to rise, sink, and vary its buoy-
ancy without loss of gas or ballast.

The normal pressure level inside the envelope is restored by
tightening or loosening the envelope, as the gas volume and pres-
sure change in response to & rise in altitude or other factors,

If this were not done, the intensified gas pressure could be
relieved by means of the various safety valves (Fig. 12) installed
to valve off excess gas. This, of course, could only happen in the
event of negligence, which there is no reason to anticipate,

A catwalk makes it possible to inspect not only the bottom
but also the top of the envelope, even while aloft,

Fig. 15. The relative size of various dirigibles as compared
with the Eifel Tower, the Pyramid of Khufu (Cheops ), the deck of an
ocean-going steamship (shown hatched ), a pine tree, and Giffard's
captive balloon.

The figures indicate the number of passengers carried.
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Fig. 16%. All-metal models of the dirigible made exclusively
of iron. This, so to speak, is the first embodiment of the idea.

In the middle we see a flat dirigible, at the bottom & slightly
convex, and at the top the fully inflated form. The half-tubes used
to cover the articulated joints at the edges of the envelope show up

clearly.
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Fig. 17.

The envelope personally constructed by
K. E. Tsiolkovskiy during the years 1912
and 1913,

Fig. 17. The inflated dirigible in its most distinctive form.
The bottom, not visible, is exactly the same as the top.
The length of each model is about 2 meters.

IT. ADVANTAGES

1. Incombustibility. There is nothing inflammable --
neither in the envelope nor in the gondole, except for certain furnish-
ings. The gas will not explode by itself, though it will burn. If a
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multiplicity of small openings were made in the envelope and the es-
caping ges were to catch fire accidentally, we would get a series

of steady flames burning outward, since the internal pressure would

not permit air to penetrate into the envelope; this means that

there would be no mixing and hence no explosion. Of course, the
envelope itself will not catch fire, but at worst may melt, the

most serious mishap being the loss of gas. The envelope will

slowly collapse, losing some of its buoyancy in the process. On

board ordinary dirigibles, the passengers, and in particular the pilots
and crew, being more responsible, are continually anxious about the
possibility of fire breaking out. Smoking and lighting fire is
strictly prohibited. Actually, & minute is all that is required to
bring complete disaster and reduce the ship to ashes. Terror and panic
paralyze the hand and mind. The gas could ignite unexpectedly due to
a spark caused by friction or atmospheric electricity. It is very
difficult to foresee and forestall such mishaps. The slightest con-
fusion on board, some misunderstanding, and the crew may lose their
heads and contribute to a serious accident.

2. Impermeability of the envelope, absence of osmosis. There
is no danger of losing buoymncy. Storms, hurricanes, whirlwinds,
foul weather and no opportunity to land are not such terrible threats.
All of this can be overcome by rising higher into a quieter layer of
the atmosphere, where there is always good weather and the sun shines
imperturbably, and where at night the course is indicated by the
stars, the moon, compass, barometer, and other instruments.

The ship can stay aloft as long as desired at these altitudes,
and, of course, it is perfectly safe to descend under more favorable
weather conditions and at some place more favorable for landing.

Let the stormy weather rage on below, we can spend our time leisurely
in the kingdom of bright light and pure air. There will be no harm
even in stopping the engines.

3. Nonhygroscopicity of metal. Thanks to this property, the
dirigible will not become heavy and weighted down by absorbing mois-
ture from the air or rain.

L, ILife of dirigible., Aluminum, nickel, and many other
metals will last a century without being replaced; the same holds for
an iron envelope periodically coated with varnish or paint. A lead-
plated envelope is also tough. The envelope may be made twice as
thick as sheet iron in large dirigibles, or 6 times as thick (3 mm
thick) when aluminum is used. The properly constructed metal en-
velopes of large dirigibles would be virtually indestructible.
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5. Cheapness of iron. Fabric rubberized on one side is not
only 50 times more expensive but, what is more important, ruptures
easily under the action of sun, weather, and fire. DBecause of the
short life of this material, it turns out to be at least 1000 times
more expensive than iron. And how attractive is the prospect of
cutting the costs of a dirigible by 1000 times!

6. The strength of the material makes it possible to build
dirigibles 300 meters high, each capable of carrying as many as 200,000
passengers. Such dirigibles could travel faster than railroad trains.
Travel on board these vessels would be cheaper than transportation on
board & stemmship, since (cf. my "Simple study of an airship") every-
day all-weather travel by airship would be accessible to one and all.

7. The bright surface of the metal envelope will absorb little
heat from the sun and will not be cooled so readily by radiation at
night, or in the daytime when heavy clouds cast their shadow over
the dirigible.

A consequent change in the temperature of the light gas in-
side would necessitate both valving off gas and releasing ballast.
This loss will in general be greater than that due to osmosis of
the gas. It will be minimized, of course, if a metal envelope 1s
used,

8. Heating of the light gas. Actually, a metal dirigible
should never have to lose gas and ballast at a&ll thanks to the arti-
ficial increase and change in the temperature of the gas inside the
envelope. It would be dangerous to heat the gas unless the envelope
were noncombustible, The combustion products from the engines are
led through a special black metal tube located inside the envelope.
The cooled products are expelled from this pipe into the atmosphere.
Accordingly, the light gas is always heated above the temperature of
the surrounding air., If a fraction of the combustion products 1is
vented directly to the outside air, then the temperature inside the
envelope will be lower. In other words, the temperature of the light
gas can be varied within certain limits, which brings & host of ad-
vantages following from the use of a metal envelope, viz.:

a) high temperatures to increase the buoyancy;

b) no risk of water or snow freezing and sticking to the
envelope in wintertime or in polar regions;

¢) varying the temperature also makes it possible to
regulate the buoyancy of the dirigible over an enormous range; for
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example, all the passengers or all the cargo could be discharged,
yet the dirigible, thanks to artificial lowering of the temperature
of the gas, would not tend to shoot upwards into the clouds like a
rocket;

d) varying the buoyancy makes it possible for the dirigible
to ascend and descend with no loss of gas or ballast;

e) for the same reason, the dirigible will find it easier
to cope with natural fluctuations in the gas temperature due to
sunlight and other factors; for instance, when the gas is heated
by the sun, the temperature can be artificially lowered, and the
tendency of the dirigible to float upwards counteracted.

9. No need for ballonet. In order to preserve its ex-
ternal shape with change in altitude, position, etc., the ordinary
dirigible carries inside a gas bag (ballonet ), partially inflated
with air. As a result, the soft surface of the dirigible remains
smooth, and deep folds, that might interfere with control of the
dirigible in flight, do not develop. But a metal dirigible cannot
develop folds, its shape is consistently true and well adopted to
cutting through the air, and thus it has no need to carry a
bellonet inside. The ballonet might still prove useful for main-
taining longitudinal stability; but this can be achieved just as
well by tensioning the corrugated envelope.

Should this tensioning prove inadequate for the needs of
large metal dirigibles, recourse could be had to other means of main-
taining stability (Fig. 11 and Fig. 14). I have written extensively
on these means, and they are now being used in the latest designs
(Crocco and Torres-Quevedo).

10. The model T have constructed demonstrates that a com-
pletely elastic dirigible can be obtained even when the height 1is
no more than 2 meters. Theory shows, however, that even a dirigible
as tall as the Eifel tower (300 meters) could be built. In view of
the feasibility of small dimensions, we can begin by constructing a
tiny dirigible., We then risk very little, and in the process we can
learn how to build dirigibles of more generous dimensions. Thus,
we shall be in a position to take our second step with virtual
certainty of success.

11, 12, Huge envelopes are made possible by the strength
and low cost of iron and steel. Their size will render metal
dirigibles the cheapest means of transportation for passengers and
cargo, as I have proved many times over in my writings. The speed
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of the zeppelin is now T5 km/hr; the speed of large metal dirigibles
will be twice as great, i.e., in no way inferior to the speed of
airplanes.

13. Fase of inflation. With the envelope suspended in
the dock in its flattened-out form, the air is evacuated. The en-
velope will contract, the walls will draw closer together to the
point of contact, and only at top and bottom will a small amount of
air remain. Then light gas is admitted at the top while air is
still being exhausted from the bottom, until the air is completely
replaced by hydrogen. More hydrogen is then pumped in, all the
other openings in the envelope being sealed (Figures 1, 2, 3, L 5).

14, The volume of the envelope will vary elastically from
almost zero to some specific value. The smoothness of the shape will
not be impaired in the process. If the dirigible were filled to half
its maximum capacity at sea level, then, assuming it contains no in-
ternal ballonet, it would be capable of ascending to a height of 5 km
with no trouble. Because of the state of tension of the corrugated
envelope, the stability of the longitudinal axis will always be secure.
Tts ability to move through the air will not suffer either. A metal
dirigible could thus make its way over mountainous areas, over any
plateau., There would be no barriers to its progress.

15. Gondola, propellers, rudders, and stabilizers remain to
be added to our design for a metal dirigible. The two heavy longi-
tudinal bands at top and bottom are convenient for this purpose. The
cabins could be both underneath and on the roof, and the same holds
for the propellers, so that the protection and maneuverability of
the dirigible would be greatly increased. The dead and 1ive loads
of the lower gondola would have to be much greater than those on
top, for reasons of stability.

16. There would be no need to use expensive and dangerous
gasoline as fuel. The engines could burn the envelope gas. If
this were ordinary illuminating gas, the fuel would be 10 times
cheaper than gasoline; but if pure hydrogen were used, it would
still not be more expensive than gasoline. As the gas inside the
envelope was used up, the interior of the envelope would have to be
heated by the method described. When the temperature of the gas
could no longer be raised any higher, the dirigible would have to
be lowered to the ground, the gas cooled, and the envelope refilled.
Then the dirigible would be ready for another thousand kilometers of
nonstop flight.
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17. Simplicity of construction. An assembly dock is needed,
i.e., a huge barn with the upper longitudinal strip suspended from
the ceiling. Then the side walls are hung from the roof strip.
These side walls are similar and consist of trapezoidal panels. Each
panel is installed separately in the same hangar, from below, on a
horizontal or inclined platform. The trapezoids are made of corru-
gated iron sheet (Fig. 8). The corrugations are uniform for each and
every trapezoid. The non-parallel sides of the trapezoids have hinges
at top and bottom (Figures 6, 7, 9, 11), matching those of the upper
and lower beams. The parallel sides of the trapezoids are designed
to form leaktight joints; these joints are closed after the wall
panels have been joined to the roof strip. The bottom of the envelope
is joined to the wall panels later on. Finally, all the hinged joints
are covered with cylindrical half-tubes (Figures 3, 4, 5, 6, 10) to
prevent leaks. The attachment of the gondola, propellers, etc,,
presents no problems. I may add that everything will definitely be
made of metal (Fig. 14). Note that all the parts are first joined
geometrically, and only later are the Joints sealed.

18. Risk to life and limb. The zeppelin-type dirigible may
be considered a very safe means of transportation, except for its
inflammability. It would be even safer than my proposed vessel, if
it were made entirely of metal, but this would be impossible without
a radical change in design.

Actually, if all the light gas were to be let out of a zeppelin,
it would still retain its external shape, the hydrogen being replaced
by air. This shape, having a considerable surface area, would pre-
vent it from falling too quickly; the partially deflated dirigible
would act somewhat like a parachute.

My dirigible lacks this advantage, unless air were blown into
the ripped envelope by means of a large emergency fan.

But the inflammability of the material cancels out all the
advantages of existing dirigibles.
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3, THE DESIGN OF A METAL DIRIGIBLE TO CARRY
FORTY PASSENGERS

In this chapter I shall give a far from perfect and quite in-
complete account of the design of a dirigible 20 meters high and 120
meters in length, capable of carrying 4O persons, and having a volume
not exceeding 23,600 cubic meters.

It is still premature to think of actually carrying out this
project. Much preliminary work will be required, as shown in my
article "Sequence of Practical Operations in the Construction of
Dirigibles" (see Chapter V). Once these preliminary steps have been
taken, the project could be carried through to completion in line
with the results obtained.

Moreover, a project involving a dirigible of this size could
not be very successful in any case: the larger the dimensions (up
to a height of roughly 50-100 meters), the better the prospects of
realizing the project.

I. Design Fundamentals

The design of this dirigible is based on four principles that
are not applicable to other systems.

1. It is made entirely of metal (a cheap, durable, and strong
material). There are no gas losses. I4 has a long life.

2. Variability of volume without detriment to the smoothness
of the shape, strength, or durability of the envelope. Simple de-
sign.

3, Construction of the envelope on a horizontal surface in
flat form.

k. 1Inflation with hydrogen in the same position, without first
having to raise the envelope.

5. No construction dock or hangar.

4. o need for a mooring tower, since the dirigible, lacking
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a rigid framework, is elastic like a ball. A small mooring mast will
do.

7. No need for ballonets or bulkheads. These are replaced by
a cable tensioning system.

8. Heating of the interior of the envelope by means of com-
bustion products and natural cooling eliminate ballast and gas losses.

Thanks to the above advantages, the 1ift force can be varied
at will. Meteorological effects can be dealt with successfully.
Option of changing altitude, at no cost, in order to escape from
rainstorms, thunderstorms, pitching and rolling, and to take ad-
vantage of favorable winds.

9. Simplicity 1n design and ease of construction.

10. All the loads are suspended. All the forces place the
envelope, and other parts of the dirigible, in tension, the condi-
tion of minimum weight.

11. The gondola, motors, cargo, etc., are all suspended and
have their support (thanks to an ingenious system of cables) in the
vast upper surface of the envelope.

12. The rigid part of the dirigible, the floor of the gondola,
serves as a firm foundation for mounting essential equipment.

13. The elastic limit of the material should not be exceeded
at any point.

14. On the whole, the dirigible is flexible, and the less
flexible parts are relatively small.

15. The rest of the design is the same as for other dirigibles.
This applies to the motors, propellers, and control surfaces.

Most of the calculations are approximate, but on the conserva-
tive side. For example, the forces and the weight of the equipment
are exaggerated, while the 1ift force is underestimated.
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II. Some Theoretical Remarks

Some previous acquaintance on the part of the reader with my
writings on the metal dirigible is assumed. Accordingly, I shall not go
into too great detail. Much will be taken for granted. My aim is a
practical one: to point out the best design and best way to build
it. I shall present the simplest and most practical formulas, with-
out going into detailed explanations.

Shape of Longitudinal Section of
Dirigible Envelope

16. From my "Theory of the Aerostat" (I shall refer only to
formulas from that work), it is clear that the principal longitudinal
section through an envelope filled with hydrogen may be expressed by
the equation (259):

(- o
y_yl x'?. e

This is a very smooth curve, as may readily be seen from the
drawings. The corresponding surface of revolution is not quite so
full (blunt or convex) as an ellipsoid, but is fuller than the sur-
face formed by rotating a parabolic curve (taken at the vertex).

17. On inflation, a flat envelope of this shape will require
corrugations of constant curvature (in the middle section), which
simplifies the comnstruction of a corrugated metal dirigible. Only
the ends of the envelope will require steeper corrugations.

In order to avoid this, the ends of the envelope are replaced
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with conical surfaces.

Nevertheless, these should still be corrugated, though the
corrugations may be shallower, because smooth (even conical) surfaces
will form irregular folds on inflation. And this would Jeopardize
the stability of the envelope.

The Role of the Envelope Bases

18. These bases are necessary, for in large dirigibles it is
the bases that resist most of the gas pressure. But since they can-
not be very broad, they must be made three times as thick and of
equally strong material. Moreover, thanks to the bases the bending
of the side walls of the envelope will be the less the closer we
come to the ends, which is precisely what 1is called for, since the
depth of the corrugations is almost constant, and the radii of
curvature of the side panels diminish toward the ends of the en-
velope.

19. Note that even these thick bases, by enlarging the
volume of the envelope, increase the 1ift force by as much as the
weight of the envelope is increased as a result of adding to the
bases themselves.

The bases, therefore, must not be made narrower toward the
ends in order to save weight; they should rather be made thinner
toward the ends and thicker toward the middle. The middle could
also be enlarged without being made thicker. This would not only
increase the strength, but improve the buoyancy of the dirigible and
is therefore more advantageous than thickening.

Siope of the Envelope Corrugations

20. A rough idea of the stretching of the corrugations may be
had from formula (294). Using the notation of Fig. 1, we find
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S -85

= 0.5 *

>
I\):)?\) .I T\)Mf\)

2l. Here Y2/X2 is the slope of the corrugations, (S -Xé)/Xé

is the ratio of the total extension to the unstretched sheet. The
total depth of the corrugations will be 2Y1, and the total length

hx&. The ratio will be 0.5 Yé/XQ, i.e., one half the slope of the
corrugations.

22. The curve of the corrugations may be an arc of a circle,
a truncated sinusoid; or even a straight line. I recommend a smooth
curve, as for example an arc of a circle. Of course, the stretching
will also depend on- the shape of the cross section, but only very
slightly: the error will not be large, and we may assume that our
formula is valid for all curves provided the slope X /Y is not
greater than 0.5. 2

23. The corrugations must not be flattened out completely.
After the envelope has been inflated and the corrugated sheet sub-
jected to a certain amount of stretching, shallow or gently sloping
corrugations must still remain. Otherwise, the rigidity of the en-
velope will be impaired, and failure may even occur. If the corruga-
tions remain, failure will be impossible (the longitudinal bases will
prevent it).

2k, For this case, using the notation of Fig. 1, we find from
the formula derived above, cf. (20), that

g -
Sl

-0 (@ - @]
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Here Yé/Yé 1s the relative residual slope of the corrugations
after the corrugated sheet has been stretched*; (s - Sl)/Xé is the

maximum, but not the total relative extension of the corrugated sheet.
When the corrugations are completely flattened, we get the limiting
extension of the corrugated sheet.

25. I shall now turn to the inflation of the dirigible en-
velope, i.e., the transition from the plane condition to a surface of

revolution.

Using the notation of Fig. 2 for the dimensions of the dirigible,
we have (259):

C-%
N N I N
dx 32 X2 } x2-,

<

*I.e., the ratio of the residual slope (or, more precisely, depth) of

the corrugations to the initial slope.
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where Al is the increment in the arc of the horizontal meridian over
an interval dx as the envelope passes from the flat to the inflated
shape, and vice versa. Tn the latter case, the increment will be
negative.

Thig applies to the section described above under 17.

o6. I have shown that the extension will be about the same
for different points on the center-line of the envelope (except at
the ends), i.e., for different x/xl. Tn order to find this extension,

we put x/xl - 0 in the last formula. We then calculate

Here xl/yl is the aspect ratio of the fully inflated envelope.

27. This extension (25) must be equal to the extension of
the corrugated sheet, see (24), i.e., from (26) and (24) we obtaln

o5 (2 -0 (BT (D) )

Remember that yl/x1 is the aspect ratio of the inflated en-
velope, and Y2/X2 is the slope of the unstretched sheet, while Y3/Y2

is the residual slope of the corrugations after the dirigible has
been inflated.

i
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Contour of inflated envelope

Fig. 2

28. From (27) we have

This shape .determines the slope of the corrugations of the un-
stretched corrugated sheet ag a function of the envelope aspect ratio
and the residual slope of the corrugations in the inflated envelope.

We design the envelope in the flattened form. It is assigned
a certain aspect ratio. What will be the greatest slope of the
corrugations? Neglecting the*bases, we have:

29. emy, = l*yl;’

where yl is the radius of the inflated envelope, and y, is the radius

4
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of the flattened emnvelope. Eliminating y. with the aid of this
formula, we have from formula (28): 1

2

N

% e (D - 1- G
30. o = 0817 (7) 1 - (é)

n

that the aspect ratio of the flat

31. Suppose, for instance,
and that the convexity of the

side walls of the envelope is four,
stretched material is 0.5, i.e.,

Y

Y
fl = L4 and 2 - 0.5.
Yy o

Then

Gl

2
Y

= 2.827.
2

n compile a table, such as Table 1 below, for

In general, W& C&
different aspect ratios of the flat envelope, giving the slope of the

corrugations for a residual slope of 0.5 and 0.3.

The last two rows of the table give the relative value of the
total extension (straightening) of the corrugated sheet, or the de-
gree of shortening of the £lat metal surface upon corrugation. This
shortening may amount to 11%, which is wneconomical. But there 1s no
need to make dirigibles with an aspect ratio in the flattened form of

less than 4 (or less than 6.3 when inflated). Then the shortening
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will not be greater than 6.&%. When the sheet is corrugated, it is
possible to judge whether the slope is satisfactory from the shorten-
ing.

According to formulas (245), the extension of the envelope will
be far less near the bases and will tend to zero. But some degree of
corrugation must still be retained, even at the bases themselves,
otherwise the side walls would not have the required rigidity. The
corrugations may, however, grow shallower as the bases are approached.
In view of the concavity of the upper portion of the envelope, the
upper parts will stretch somewhat more than the lower parts. There-
fore, it is even preferable to keep the depth of the corrugations at
the top of the envelope almost the same.

32. From (245) we conclude that the shortening A as a func-
tion of the distance y from the edges of the envelope may be expressed
by the formula

y y
A=Al(}7]-_) . (2-3,—1),

where yl is the distance from the center to the edge of the flat en-

velope along its transverse diameter.
This formula can be used to compile a table of approximate
values of the ratio A/A. for various relative distances to the edges

of the envelope. L

TABLE 2
y/yl 0.1 0.2 (0.3 0.4 |o.5 [0.6 |0.7 |0.8 |0.9 1
A/Al 0.19]0.36 | 0.51] 0.64] 0.75] 0.84]0.91] 0.96] 0.99 | L
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This table will be of greater value for very large dirigibles,
whose fabrication must be more precise.

353. Elongated envelopes are more economical. Thus, we see
clearly from Table 1 that in the case of a flat envelope with an as-
pect ratio of 5 (or almost 8 when fully inflated), the maximum
shortening would be less than 4% (the true figure will be even less,
since the envelope stretches).

34. The elastic extension of the corrugated sheet is given
in row 6 of Table 1. For example, in the case of flat envelopes
with aspect ratios of 4 and 5, the percentage extension must be 4.7
and 3. In the case of envelopes 2 meters or more tall with an aspect
ratio of 5 when flat, this is perfectly feasible, as demonstrated not
only by the many calculations I have made but also by my experience
in building a model¥.

The transverse elastic bending of the envelope during inflation
1s also feasible on the same basis (cf. "Theory of the Aerostat").

The practical conclusions that may be drawn from this discus-
sion of the slope of the envelope corrugations are illustrated in
Fig. 1.

ITI. Notes on Use of Table?l

35-40. The tabulated data relate to one half of the en-
velope. The purpose of the table is to elucidate the forces acting
on the envelope. From these data we can also obtain some hints on
improving the design of the dirigible. The table is also necessary
for its construction.

Initially I have confined my remarks to the more important
rows of the table.

Row 8. ©Needed in actual construction.

ITable 3 at the end of this chapter.
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Row 12. Dimensions of inflated envelope, vertical.

Row 15. Volumes of compartments, and total volume.

I1h

Row 16. Lift force for each compartment and dirigible as a
whole (not counting weight of hydrogen).

Rows 17 and 18. Same, inflated to 75% capacity.

g 5 w5 20 25 30 35 40 4S5 80 55 §Om

Fig. 3

Rows 34 and 35. Free 1lift force for compartments and dirigible
as a whole (inflated to 100% and to 75% capacity), available to 1ift
motors, control surfaces, fuel, passengers and Crew, and other neces-
sary loads.

Rows 36 and 37. OSame, but not for a whole compartment, i.e.,
referred not to 6 meters but to 1 meter of length of compartment (or
gondola).
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Row 38. Overpressure of gas inside envelope, per square meter.

Rows 66 and 67. These figures must serve as & guide in de-
termining the thickness, width, and strength of the bases at different
cross sections.

41. Fig. 3 is also intended as an aid to understanding the
table.

The upper part of Fig. 3 relates to the flat, and the lower
part to the fully inflated dirigible. The upper diagram shows the
dirigible in the vertical position (even though it may be constructed
in the horizontal position).

The solid lines running across the diagram indicate planes
normal to the longitudinal axis, which divide the envelope into
imaginary compartments of equal width. There are ten of these, each
6 meters wide. The relative distance of the parallel sections from
the center is not indicated in the drawing. The broken lines en-
close imaginary trapezoids, of which the solid vertical lines form
the axes. When the envelope 1s inflated, these trapezoids become

conical surfaces.
The length of the longitudinal semiaxis of the envelope is de-
noted as Xl’ while x simply denotes the distance of the transverse

plane from the center cross section. There follows & row by row des-
cription of the tables.

1. Row 1. This gives the ratio X/Xl defining the position
of the cross section.

Rows 2-4. These give the following quantities, which will be
found useful in the calculations:

X2 X2 X2
1 - (;1) 5 v[l- (g;) H 3/1 - (;1) .

Row 5. The relative ordinates of the flattened side walls of
the envelope or
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Rows 1-5 are essentially only ratios.
Row 6. Tangents of angles for flat envelope.

Row 7. True distances of cross sections from the center cross
section.

Row 8. Ordinates y of flat side wall, assuming the center
ordinate yl to be 15 meters. This and subsequent values are computed

from the formula of row 5 only up to the tenth column (i.e., to the
section 0.9). Actually, the design of the envelope calls for conical
ends¥*. To obtain these, tangents to the surface of the envelope must
be drawn from the point where x/x1 = 0.9 (row 6).

Row 9. Double ordinates (2y) of the flat envelope (under con-
struction), or lengths of cross sections.

Row 10. ©Same, with the addition of the width of the base,
which T assume to be 2 meters (about 10% of the height of the in-
flated envelope).

Row 11. Ordinates of the completely inflated envelope, or
radii of the cross sections. Divide the half-perimeter of the cross
section of the flat envelope by .

Row 12. Diameters of cross sections through inflated envelope.
The ordinates and diameters differ from the values for a flat envelope
in row 9 because of the bases, but only slightly.

Row 15. Cross-sectional areas of fully inflated envelope.

Note that rows 8-13 do not depend on the length along the longi-
tudinal axis of the envelope. They relate to any aspect ratio (for a
flat envelope 30 m wide).

Row 14. Suppose that the side walls of the flat envelope con-
sist of trapezoids whose centerlines coincide with our cross sections.
The figures in this row indicate the heights (widths) of these trape-
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zoids when the length of the +1at envelope is 120 meters (semiaxis
60 meters), or when the aspect ratio of the flat envelope is

The first and last figures relate to half-trapezoids. The heights
are therefore also halved.

When the envelope is inflated, the trapezoids form, with the
pbases of the envelope, 2 series of truncated cones, whose heights
will be nearly the same as those of the trapezoids. We obtain 11 new
conical compartments. Only the end compartments will be halved.

Row 15. Here the figures indicate the volumes of the compart-
ments when the envelope is fully inflated. We saw that the ends of
the envelope must be conical. The 1ast column is computed accord-
ingly. Note that more exact formulas yield larger volumes for the
cones and for the dirigible as & whole¥*. The volume of all 11 cones
will be 11,795 cubic meters, double this value being 23,590 cubic
meters. This is a comparatively amall volume. Dirigibles are now
being built with a volume 4 to 6 times larger and more.

Row 16. The lift force for each compartment fully inflated
with hydrogen. The lift force per cubic meter is assuned to be 1.2
kg. The combined 1ift force for all 1l compartments 1s 14,149 kg,
and the lifting capacity of poth halves of the envelope together is
08,298 kg, i.e., MOYe than 28 tons.

Row 17. Our dirigible 1is, in general, not filled to full
capacity (100%) but rather to approximately 75% of capaclty. This
enables the dirigible to rise to almost 2 km, which is ofter ad-
vantageous, and sometimes necessary.

The figures 1in this row give the volume of the compartments
assuming 75% inflation. The half-volume of the envelope is then
8,8k cubic meters, and the total volume 17,688 cubic meters¥.

Row 18. But at this degree of inflation the 1ift force for
each compartment will be reduced. Thus the 1lift force developed by
all 11 compartments will be 10,612 kg, and the 1lift force developed
by the entire dirigible will be 21,22& kg.

Row 19. Twice the area of the lateral trapezoids of the flat
envelope. The area of the terminal rectangle (2.h6 X 2) square
neters is added to the end. The half area is 2,60l square meters,
and the total area 5,208 square meters (Fig. 3)-

Row 20. The weight of each pair of lateral trapezoids. We
assume the density of the metal to be 7.8, and i1ts thickness to be
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0.15 mm, with 10% allowed for welding, corrugations, etc. Under
these conditions, one Square centimeter of sheet metal will weigh 1.3
kg. The half-weight will be 3,598 kg, and the total weight 6,79 kg.

Row 21. The weight of the bases of each pair of trapezoids.
We assume the density to be 7.8; thickness 0.45 mm; the weight per
gquare meter 3.51 kg. Adding 20% for the hinged joint, longitudinal
(very shallow) corrugations, the inclination, etc., we find that one
square meter of the base weighs about b.o kg. Note that the inclina-
tion of the bases, even at the énds, will increase their length by
only 13%, while at this point they may be at least half as thick.

The area of the bases for each compartment, assuming a width
of 2 meters, is computed in row 1k. Multiplying this by the weight
of one square meter, 4.2 kg, we obtain the figures in row 21. The
weight of the bases for half the envelope will be 1000 kg, that for
the entire envelope 2000 kg.

Row 22. The weight of each conical compartment with the
bases and hinged joints. The weight of half the envelope is 4,386
kg, that of the entire envelope 8,772 kg.

Row 23. Surplus 1ift force for each compartment and 100% in-
flation (row 15). The combined surplus is 9,751 kg, that for the
entire envelope 19,502 ke,

Row 2L. Same, for 75% inflation (row 16). The combined
surplus is 6,211 kg, that for the entire envelope 12,ko2 kg,

tain the total surplus more simply and more reliably by dividing the
combined 1ift force (row 16) by L. We thus find 3,532 kg, and 7,064

In order to find the net 1ift force for each compartment, we
have still to subtract the weight of the gondola, the cable tension-
ing system, the heating tube, etc. We shall now deal with these
points.

Row 26. Here we determine the weight of the cable tensioning
system: the total weight and the weight bPer running meter of the
gondola,.
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The load on the cable system is not greater than the maximum
1ift force, i.e., 28 tons (row 16). The cross section needed to re-

sist this load will not be more than 28 cm?, if we assume an ultimate

strength of 60 kg/mm? and a factor of safety of 6; if the denisty is
7.8, one meter of cable will weigh 22 kg. On the average its length
will be not more than 20 meters. This means that the entire cable
system will not weigh more than 440 kg. Doubling this figure to
allow for pulley blocks and miscellaneous parts, we arrive at 880 kg.
This means about 12 kg per meter of the gondola (the length of the
gondola being T2 meters) .

Row 27. We now consider the total weight of the heating sys-
tem per meter, assuming the heating tube to run the length of the
gondola. We shall assume a semicircular cross section, dilameter 0.5
meter, and a wall thickness of 0.13 mm. The surface area of the tube
will be 57 square meters. It will weigh 57 kg. We double this
figure and round off the result to allow for the temperature regula-
tor and other accessories. We arrive at a figure of 120 kg, or 1.7
kg per meter.

Row 28. We now find the weight of the gondola hangers. The
load on these members can not be greater than the maximum lift force
(row 14). Therefore the cross-sectional area can not be greater than

28 cm? (row 26), and the weight per meter can not be greater than 22
kg. Assuming the average height of the gondola to be 4 meters, we
obtain 88 kg. But in view of the need for transverse bracing and
various other secondary members, we shall double this figure and
round it off to 180 kg, or 2.5 kg per meter.

Row 29. We now deal with the sheathing of the gondola. The
1ateral surface area will be 57 square meters. Assuming steel or
some other metal, one square meter of which weighs 1 kg, and rounding
off, we obtain a figure cof 600 kg for the side walls of the gondola.
This includes the light windows and doors. Thus, we have about 9 kg
per running meter of gondola.

Row 30. We now find +he total and the relative weight of the
gondola floor. We shall take the width of the gondola as 2 meters,
the average thickness of the floor as 4 cm, and assume the structu-
ral material to be wood with a density of 0.6. Then the weight of
the gondola floor per meter will be 45 kg. The total weight of the
floor will be 3240 kg. How this load and the other loads are dis-
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tributed will be clear from the drawings.

Row 31. Weight of suspended seating, bunks, etc. We may as-
sume a weight of 10 kg per person or a total of 40O kg for all Lo.
This amounts to less than 6 kg per running meter of gondola.

Row 32. Thus, one running meter of gondola with seats, cable
tensioning system, and heating tube, will weigh 12 + 2 + 9 + 3 + 45 +
+ 6 ~ 75 kg. The total weight over a length of T2 meters will be

5,54k kg*,
Row 35 gives the weight of the gondola compartments.

Row 34. From rows 33 and 25, we find the 1lift force for each
compartment of the gondola and each section free of the gondola for
100% inflation.

Row 35. Same, but for 70% inflation (row 24). The last half-
length compartment of the gondola is supported by a double (6 meters)
envelope compartment, and for that reason the free 1ift force is
comparatively high.

Row 36. Same, but per meter instead of for the entire compart-
ment.

~

Row 37. Same, but for 75% inflation.

Row 38. If the gondola extended the full length of the en-
velope and the load were distributed according to the 1ift force for
each compartment, there would be no forces tending to bend the
dirigible, i.e., there would be no moment of the envelope and no
moment of the 1lift force. More precisely, they would cancel each
other out.

In this case the envelope would be subjected solely to the
vertical tension due to the weight of the envelope and the pressure
exerted by the gas. In row 38 we have the total gas pressure (differ-
ence) over each cross section. It is theoretically assumed that a
tube open at the bottom (appendix), filled with hydrogen and one
half the height of the envelope (10 meters) in length, is connected
to the bottom point of the envelope. This tube will double the
average gas pressure. Note, by the way, that the average pressure
per meter will be 24 kg, maximum 36 kg, minimum 12 kg. Without the
added pressure (i.e., without the tube), the minimum pressure would be
zero, the average pressure 12 kg, and the maximum 24 kg, In general,
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we have

p=(y . -7 ) (b + h),
air gas

where the difference between the density of the air and the density
of the hydrogen (filling gas) is multiplied by the sum of the length
of the tube and the distance from the low point of the envelope to
the section in question.

Row 39. The relative value of the ordinates of the fully in-
flated envelope.

Row L40. TFormula (L68) gives us the ratio of the two compo-
nents of this (gas) pressure which place the bases in tension. We
shall neglect the stresses in the side walls.

Rows 41 and 42 present these components, i.e., the temsion
on the upper and lower bases.

In the case of large dirigibles, for example, dirigibles de-
signed to carry 100 to 1,000 persons, the gondola will extend the
entire length of the envelope, and the moments of the free lift force
and the force of gravity will balance out. We shall be dealing
principally with the gas pressuxre. Then, as 1s evident from the
last two rows of the table, near the middle the tension on the upper
bagse will be almost 1.3 times greater than that on the lower base.
In giant dirigibles, therefore, the middle portion of the upper base
must be made thicker and broader. The latter will be more economical,
since it will increase both the volume and the 1ift force of the
envelope.

In general, however, and particularly for the case of small
dirigibles, it will be quite difficult to balance the gondola load
against the free 1ift force of each compartment. Actually, the
ends of the envelope, since they carry neither the gondola nor any
other load, create a moment of the 1ift force acting to compress the
upper base and stretch the lower one. Iikewise, the appreciable
weight of the motor creates a moment with the opposite effect on the
pagses. The heavy objects sometimes transported on board dirigibles
may also have a harmful effect on the bases. Thus we may have to
deal with envelope and lift force moments that are not balanced with
respect to any of the compartments of the dirigible.
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Suppose, for instance, that at the beginning of its trip the
dirigible is filled with hydrogen, and that the surplus lift force
is one fourth the maximum. This surplus is utilized by some load
pPlaced at the midpoint of the dirigible. Consider the consequences
of this set of circumstances. First, we must determine the separate
Llift force moments for each compartment, then the total moment, and,
finally, the effect of this moment on the envelope. Row 25 gives the
surplus 1ift force for each compartment.

Row U43. Distance of the compartments from the center cross
section of the envelope.

Row 44, Multiplying the surplus 1ift force (row 25) of each
compartment by the distance (row 43), we find the individual moments
about the center cross section. These are given in row 4h4. The sum
of the moments about the center cross section is 74,182 kg-meter.

Row 45. 1In the same manner, we can find the moment of the
1lift force about the second cross section and about the remaining
cross sections, and the sum of these moments about any individual
Cross section. But there is an even simpler way of determining this.
Each moment about the second cross section is reduced by the sum of
the remaining 1lift forces multiplied by its distance from the center
cross section (3 meters).

Row 46. 1In this way we can find the sum of the moments about
any cross section. To do this, we first add to each figure in row
25 the sum of all the succeeding figures. We thus obtain row U46.

Row U7. We now find the product of these figures and the dis-
tances (row 43).

Row 18. Finally, by subtracting the figures in row 47 from
their counterparts in row 45, we obtain the total mements about each
cross section. 1In the first box, we have two moments: one about the
center cross section, and the other about the cross section nearest
to the center cross section, at a distance of about 3 meters (see:
"Theory of the Aerostat"); the moment formulas are (394), (395), (39).
Then formulas (397) - (399) and (4k2), (449), and (L450). -

Rows 49-52. What moments acting on the bases will balance
these 1ift force moments at each cross section? We can determine the
unknown additional (equal and opposite) forces on the bases at each
cross section from the equation zy + zy = M, or z = M/Ey, where z is
the unknown force on the base, y is the radius of the cross section
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of the inflated envelope, given in row 11; M is the sum of the 1ift
force moments from row 45. From these data (rows L9 and W), we
compute the additional forces acting on the bases (row 50). Com-
paring these figures (row 50) with the forces on the bases due to the
gas pressure (rows 41 and Lp), we see that the tension on the lower
base must increase drastically, while the tension on the upper base
will be reduced, since the latter is placed under compression (rows
51 and 52).

This is how matters stand when the load is concentrated at
the center of the dirigible. Then the gtrength of the upper base
will be wasted, while the lower pase will have to be made twice as
thick. This 1is all disadvantageous. Tn particular, it is un-
economical from the standpoint of minimizing weight, which is a
basic concern in designing flying machines.

We shall now assume that the permissible 1oad of T,064+ kg
(row 25) 1s 1ocated at the ends of the envelope. We have 3,532 kg at
each end.

The surplus 1ift force will tend to raise the ends of the
envelope; the end loads, on the other hand, will tend to force the
ends down. To what extent the two moments balance each other out
may be seen from the calculations.

Row 53. This gives the distance of the end of the envelope
(or load) from each cross section.

Row 54. In this rOW, we compute the moment of the half-load
(3,532 kg) about each cross section, i.e., W€ multiply 3,532 k& by
the distance from the load to the cross gection, making use of row

55.

Row 55. We determine the additional force 7z acting on the
pases from the equation pzy = M, or 2 = 2y. We £ind the values of
, with the aid of TOWS s5h and 9.

On comparing the figures thus obtained with the forces (row
50) due to the surplus 1ift force, we S€€ that the latter is far
from smoothed out by the end loads; the gerious imbalance remains.
Clearly, the gondola 1oads must be as evenly distributed as
possible, according to the lift force for each individual compartment.
Nevertheless, the force acting on the upper base (closer to the center
cross section) will ve slightly greater than that acting on the lowver
base, which is not only uneconomical, but also dangerous in large
dirigibles where the gafety factor ig small. Failure of +the upper
pase would be more hazardous than failure of the lower one.

Row 56. The result of the combined action of the end loads
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(row 55) and the lift force (row 50) is expressed by a positive
change in the forces acting on the bases of the envelope, as indi-
cated in this roy.

Rows 57 and 58. on comparison with the tension due to the
gas pressure (row 51), we see that there is a marked increase in the
tensile force acting on the upper base, whereas the tensile force
acting on the lower base is even more sharply reduced and may actu-
ally become negative at the center and at the ends, i.e., these
barts are placeq under compression, which is absolutely inadmissible,
Rows 57 and 58 ghow this clearly. ° :

We shall now consider the effect on the bases of the weight
of the motor ang the insignificant lift force moment of the ends or
the envelope (under which there is no gondola). The large Supplies
of fuel required for refilling the middle of the envelope (above the
gondola) with €25 must be distributed over the entire gondola in
accordance with the 1ift forces of the compartments. We shall there-
fore deal with the weight of the motor and the engd 1ift force moments.

For a speed or 78 km/h the engine bower will be 198 metric
units or 264 hp. Each motor contributes 132 units and g weight of
132 kg. If the speed of the dirigible is doubled, i.e., increased to
156 xm/h, the weight of each motor will increase to 1,050 kg.

force moment developed by the end of the envelope?

Rows 59 and 60. we calculate the moments (row 60) for a loag
of 625 kg at each cross section, using the distance between the loag
and that cross section (row 59).

Row 61. The additional Positive forces exerted on the bases
are determined by dividing by the diameters of the cross section

Rows 62 and 63. fThe lift force moment of the end of the en-
velope projecting beyond the gondola can be found, at different Cross
sections, by multiplying the moment about the center Cross section

X, - X
(cf. row U5, here we rind 20,618 kg-meter) by the ratio L1 | g
1
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ratio is given in row 62, and the (approximate) moment in row 63.

Row 64. This row contains the corresponding negative contribu-
tion to the force on the bases.

Row 65. Comparing this with the positive contribution due to
the weight of the motor (row 60), we see that they at first almost
balance each other out, but then the negative component due to the
1ift force at the ends begins to predominate. This is clearly evi-
dent from row 65.

Rows 66 and 67. Taking as a starting point the tensile force
due to the gas pressure (row 51) and modifying it, we find from row
65 the true forces acting on the upper (row 66) and lower (row 67)
bases.

IV. Design Features of a Metal Dirigible

In this chapter I shall not only describe the drawings but al-
so present additional information on the design of a dirigible built
to carry 4O persons.

45. Only half the dirigible is shown in the drawings, since
the two halves are almost identical. The drawing of the propellers,
control surfaces, and various other parts is schematic: only the ap-
proximate dimensions and areas are shown. Only the direction of the
corrugations is represented, since they are too small to be distin-
guishable.

L. Fig. 4 shows a side elevation of the dirigible and plan
views from above and below. The direction of the corrugations is
indicated.

45. Fig. 5 gives some idea of the suspension system. The
pulley blocks are small enough to be represented as points. The
tensioning drum and the gastight housing enclosing it are barely
distinguishable in the diagram.

L6. Fig. 6 shows cross sections through the same envelope
at various distances from the center (0.2; 0.4; 0.6). The relative
distance of these sections from the center section is indicated on
the drawings. The tensioning system is shown in the first three
drawings, but not in the remainder.
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46. Fig. T shows the shape of the center cross section through
the envelope at various stages of inflation. This shape will depend
upon: the aspect ratio of the envelope, the tensile forces acting on
the corrugations (in the side walls), the relative weight of the en-
velope, the gas pressure, and other factors. The corrugated envelope
will withstand any conditilons without forming irregular folds.

)
))/

Tl
!
]

47. Fig. 8 shows a full-scale cross section through the side
walls or corrugations¥ Starting from the top, we have:

¥In the author's manuscript; the scale is actually about 1: L, however.
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Fig. 7

1) the theoretical size of the corrugations (for a steel en-
velope 0.2 mm thick);

2) the smallest possible corrugations (lacks elasticity under
tension; this is permissible if there is no need to let out all the
gas at frequent intervals, so that the envelope collapses);

Fig. 8



435

Fig. 9

3) the largest possible corrugations (lacks rigidity result-
ing in the formation of irregular folds and cracks; if the corruga-
tions are too large, shallow second-order corrugations superimposed
on the large ones must be introduced);

) also my recommended corrugations;

5) mean dimensions of the corrugations, close to the theoretical.

48. The same drawing shows the corrugations of the base to
full scale¥. They run longitudinally and are three times as large
as the corrugations in the side panels. But they may also be much
shallower and even have a different slope. The purpose of these
corrugations 1is to lend a certain rigidity to the base. They al-
ternate with flat gsurfaces. The corrugations of the side panels
and bases run [approximately] at right angles.

Flat surfaces are left wherever any jnelastic element 1is in
contact with the bases.
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4o, Fig. 9 shows the hinged connection between the side panel
and the bases to full scale¥*. The first drawing shows a plan view of
the hinges and rod from above; the second, third, and fourth drawings
show the same hinges in cross section, and the channels shielding the
hinged joints are also indicated. The large broken semicircle gives
the largest dimensions of the channel. The thickness of the material
of which the connections are made is the same as that of the bases
(0.45 mm). The thickness of the channels is the same as that of the
side panels (0.15 mm). The number of hinge leafs and the thickness
of the rod are such that the transverse resistance of the rod is
equal to the transverse resistance of the corresponding portion of
the side panels. The transverse strength of the hinge leafs, edge

plates, and bases is not merely adequate, but three times that of
the side panels.

50. The strength Pr of the rod per unit length of the side
walls will be:

where r is the radius of the rod cross section; K is the ultimate
strength; n is the safety factor; and t is the length of the hinge
(its width is undetermined; the shorter the better).

On the other hand, the strength of unit length of the side
panels PS will be

*In the author's manuscript; the scale is actually about 1 : h, however.
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where & is the thickness of the side panels.
Equating these quantities, we find

Assuming & = 0.15 mm and assigning the hinge length t suc-
cessive values of 10, 20, 30 mm, etc., we can compile the following
table.

TABLE 4

Length of hinge, mm 10 |20 |30 | o} 50 6o | 70 | 80 | 90 |100

Rod thickness, mm 1.4|1.96|2.40]2.76|3.10 3,4213.6813.90 4.1614.38

This means that the longer the hinges or, in other words, the
fewer the hinges required over the total length of the envelope, the
thicker the rod. Some economy (negligible, to be sure) will be
achieved by using Very short hinges.

In Fig. 9, the hinges are 5 cm long, corresponding to a rod
thickness of 3.1 mm (cf. Table 4)

One group is fastened to the base, while the other "inter-
mediate" group is rastened to a special edge plate of the same
thickness as the base, which in turn 1s welded to the side panels.

Fig. 9 also shows ‘the connections for the tensioning system
and for docking the dirigible to permit deflation and overhaul.
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In the case of large dirigibles, the connections can be slipped over

the rods between hinges. I have built many models based on thisg
principle.

The channels to brevent gas leakage may also be located in-
side the envelope. An outside cover to keep out rain and moisture
will then be required. This cover should also be leakproof, i.e.,

We can use double channels, inside and out. They could be made of
some flexible fabric.

The openings of the hinge leafs must be made larger than the
rod, to provide at least a measure of rolling friction.

5l. Fig. 10 depicts a flat dirigible with hooks and rings

ni

[IRETE]

for the suspension of the envelope itself and for the attachment of
the cables of the tensioning system and the gondola. The details of
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the tensioning system have been deliberately exaggerated, otherwise
they would not be visible at all in a drawing to this scale. Blocks
and pulleys, cables, the tensioning drum in its gastight housing,
motor, propeller, and heating tube are also shown to a larger scale.

Not all the cable connections are indicated, only a Tew
typical ones and their positions. On top they may be paired tc con-
form with the base.

They are used to suspend the envelope during deflation and
also when the dirigible is being inflated after fabrication on a
horizontal platform in the flat configuration. The lower base must
also have connections, and all must be integral with the interior
tension members. The latter may be welded directly to the base
(without rings), since they do not experience bending or changes in
inclination at the point of attachment.

P
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Fig. 11

The vertical hangers supporting the gondola should have loose
connections at top and bottom, so that the gondola is capable of
small displacements. But these may be dispensed without any great
risk (or cables may be used instead). The lower connections are
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attached to the bottom framing of the gondola (Fig. 10). Cables are
lowered from them when the dirigible lands or is moored to its mooring
mast. Mooring can also be accomplished with the aid of cables at-
tached to the bases, since the latter are very strong in tension.

52, The blocks of the tensioning system (Fig. 11) must be
made of the lightest and strongest material, e.g., of choice timber
in a metal casing. The number of pulley wheels in each yoke will be
not less than 5 and not more than 10. In the first case, the average
tension on a single cable will not exceed 350 kg. In fact, the
average tension on all the cables will not exceed the total 1lift
force of the dirigible, i.e., 28 tons (cf. table above). In our case
the number of pulley systems will be 8 with 10 wheels in each. Thus
there will be 80 cables. The tension on each will be 350 kg. With
10 wheels on one axis (in a pulley system of 20 wheels), the tension
will be 175 kg.

We shall assume this number of wheels in our pulley system.
The steel wire supporting this load will need a cross-sectional area

Assuming K/n = 10 kg/mm2 for steel and a load of 175 kg, we

find f = 17.5 mm2. The wire will be 4.72 mm thick, and one meter

of the wire will weigh 0.14% kg. A very heavy and large pulley wheel
would be required to bend this wire elastically. Clearly, the wire
must consist of a large number of fine strands, il.e., it nust be a
cable. Formula (272) gave us

o
h=y-§,

where o is the elastic strength of the material; E is the modulus of
elasticity; h is the thickness of the wire; y is the radius of the
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wheel (or bending radius of the wire). TFor the best-quality tempered

o
steel — = 0.004 (cf. (307)). This enables us to compile the follow-

ing ‘table.

TABLE 5

Pulley
dismeter, cm I 6 8 10l 121 1k} 16| 181} 20| 50 40| 50

if

%%: 0.ooklo0.0810.12|0.160.20 o.24l0.28]0.32{0.36]0. 4 0.610.8]1.0

if

€%= 0.002|0.0nl0.06|0.08|0.10]0.12|0.14{0.16{0.18}0.210.3 0.4l0.5

Wire thickness, mm

If the diameter of the pulley wheel is 10 cm, the thickness of
an elementary strand of the cable will be 0.1 to 0.2 mm.

As is known, the relative strength of such wires is the greater
the finer the wire. This 1is the second advantage of using cables (the
first advantage being flexibility and the small size of the pulleys).
Thus, the cable thickness will not be more than 5 to 8 mm. Clearly,
then, the thickness of the wheel will not be more than 1 cm, and the
thickness of 10 wheels on a single axis will not be more than 10 cm.
The projection of each block will be square.

The pulley system must be so constructed that the cable cannot
slip free.

A typical compound block is shown in Fig. 11. In this case the
diameter of the wheels is 16 cm.

In view of the dimensions and the lightness of the material
used, the total weight of each block will not be more than 2 to 3 keg.
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Then the set of eight pulley systems (16 compound blocks) will not
weigh more than 32 or 48 kg.

We found the weight of the tensioning system to be 440 kg (cf.
table, p. [gé). We shall assign the same weight to the pulley sys-
tems and their various accessories. It is clear that the diameter of
the pulleys could even be twice as great without creating difficulties.

The combined length of all the cables is found from the draw-
ings to be approximately 1010 meters. The weight of one meter of
cable is about 0.14 kg. The total weight of all the cables will there-
fore be 14l kg.

I repeat: the figure 880 kg includes the entire tensioning
system. The pulley blocks account for not more than 50 kg, the cables
for 141 kg. The fixed ties account for not more than MO kg. This
leaves not less than 249 kg for the tensioning drum, its housing and
motor.

Fig. 12

But we have assigned much too large a portion to the fixed
ties (440 kg), assuming that they average 20 meters in length.
Actually, the length of the pulley system should be deducted from
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this figure. We see clearly from the drawings that 300 kg would be
quite enough, so that there will still be 140 kg left, to make a total
of 389 kg.

In Fig. 5, top right, we see a schematical cross section
through an uninflated envelope. The arrangement of the hinges, ten-
sioning system, protective channels, pulleys, and connections (for
the tensioning system and for suspending the gondola and the
dirigivle itself) is clearly shown.

There is no particular need for a large safety factor for the
members of the tensioning system. Failure of these members would
cause inconvenience, but would not imperil the safety of those on
board. The gondola hangers are the members that must be made par-
ticularly strong.

55, It is clear from Fig. 5 that the envelope is tensioned at
two points in the gondola 21 meters from the center, i.e., 42 meters
apart, 15 meters from the ends of the gondola (the motors), and 39
meters from the ends of the envelope.

Fig. 12 indicates the method used in tensioning the envelope.
The tension in one cable may amount to 175 kg, that in all four
cables may reach 700 kg. Clearly, the tensioning equipment must be
built very sturdily.

The tensioning drum toothed wheel and worm drive are mounted
in a common metal frame. The frame is connected by means of braces
to the floor of the gondola and its heavy longitudinal framing. A
lightweight housing covers the machine, thereby preventing leakage
of gas. The shaft of the worm drive operated by a special motor at
one end is the only part projecting outside this gastight housing.

The mechanism and braces are located on one side or in the
middle of the gondola. At that point, the gondola floor will have
to be reinforced. It would also prove useful to prestress the
gondola floor to balance the tension on the cables.

It is clear from Fig. 12 that the braces take up about 6
meters of the gondola length. The corresponding 1ift force (ac-
cording to the table) is 100 to 180 kg per meter or 600 to 1080 kg
over 6 meters. Therefore no increased load is required. But with
five wheels in each block, an increased load will be necessary,
gince the tension will be doubled (7002 kg). Passengers' baggage or
other cargo could be stored here.

The amount of tension on different parts of the envelope will
lessen as the cross section narrows. The tensioning drum should
therefore be stepped, i.e., it should consist of a sequence of discs
of different diameters. The ratios will be 1.00; C.95; 0.86; 0.72
(according to the relative diameter of the cross sections of the



L

envelope where the tension is applied). The cables may remain cables
over their entire length, provided their ends are fastened to the
tensioning drum and wound around it to correspond with the tension
applied to the envelope at that point. It is not advisable to make
the drum a small one, since more space is then required to wind the
cables.

It would be desirable to tighten the envelope by 1 to 2 meters.
Given a set of ten wheels in each pulley block, 20 to 40 meters of
cable would have to pass through the pulleys. If the average drum
diameter is 1 meter, 3 meters of cable would be wound around the
drum in one turn. For 20 to 40 meters this means 7 to 14 turns. The
thickness of the cable will not exceed 1 cm. Consequently, if the
winding is uniform, the width and height of the groovec in the pulley
wheels need not exceed 3 to 4 cm.

As we see, the diameter of the drum could be halved. We
would then get 13 to 26 turns. The cross section of the groove would
not be greater than 4-5 cm, which is not much for a 50-cm wheel. We
shall use this diameter.

This means that each step of the stepped drum measures 5 cm,
or 20 cm in all for a set of four discs. Allowing for the rims or
walls of the grooves and the toothed wheel, the entire drum will not
be longer than 30 cm (for a diameter of 50 cm). In Fig. 6 the drum
diameter is assumed to be 1 meter.

Each tooth meshing with the worm drive, assuming a square
section, must be about 1 cm in cross section, since it will have to
withstand a load of as much as 1000 kg. Clearly then, the entire
drum together with its frame and braces need not weigh so very much,
if it is made of good material: +the weight will be not more than
about 200 to 300 kg.

The higher the dirigible rises, the more the cables are paid
out. The purpose of the worm drive is to allow the cables to pay out
independently with the envelope tension, i.e., without the motor or a
special brake mechanism playing a part. The worm itself will act
as a brake.

There are two such tensioning drums in the dirigible. 1In
general, they apply the same tension to the envelope.

The two drums rotate in opposite directions to enable the
dirigible to recover its horizontality when tilted.

But one drum can be left inactive, while the other is in
operation, thereby placing only half the envelope under tension, or
‘relaxing half the envelope, depending on the extent to which the longi-
tudinal axis of the ship 1s tilted.

If the envelope is well balanced, the weather is calm, and the
dirigible is flying at a certain altitude, the horizontal control
surface alone will serve to stabilize the craft.
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Then there will be no need to apply tension in order to create
normal hydrogen pressure in the envelope: a safe pressure will be
most simply obtained by means of the temperature regulator. If the
pressure is high, the temperature is reduced, the dirigible loses
altitude, and the pressure returns to normal. The reverse process 1s
adopted if the pressure is too low.

As a result, the average work done per hour in applying ten-
sion is modest, but occasionally, when it is necessary to tighten the
envelope, the work rate will be higher. To lose 1 km of altitude,
the envelope will have to be drawn in by 2 meters, i.e., the gondola
will have to be raised by the same amount. However, the gondola to-
gether with all 1ts contents will not weigh more than 20 tons. This
means that the work done will amount to 40 meter-tons. If the di-
rigible descends 1 km in 100 sec, the work done in tightening the en-
velope will be 400 kg-meters per sec, Or 4 metric work units. The
rate of descent will be 10 meters a second. At a rate of 5 meters a
second, the work would amount to 2 units.

In ascending the work done would be equal and opposite, were
it not for the friction of the worm drive which absorbs it.

Thus, 2 to 4 metric work units must be applied to each drum
by the motor. It would be more economical to operate the tensioning
system by using the main engines. These are 15 meters away. Pneu-
matic or electric power transmission would be most economical from
the standpoint of weight. Then the tensioning drum could be supplied
with 100 hp, or even more, directly, and could thus operate at an un-
usually fast rate.

But it would be advisable for the tensioning drum to be
operated independently of the main engines. Gasoline or gas motors,
which start up rapidly, would be needed. But this, of course, will
not mean any savings in weight.

The horizontal trim of the dirigible cannot be maintained by
two methods at once (the horizontal control surface and the tension-
ing system, for example). An attempt must first be made to restore
horizontal trim by means of the tensioning system alone, and if
possible, to do without the horizontal control surface.

A fortiori, it will not be possible to make use of three or
more stabilization methods simultaneously, for example, by adding to
the first two methods uneven heating of the hydrogen inside the en-
velope by means of the temperature regulator.

But the last method may be used alone to stabilize the longi-
tudinal axis of the dirigible.

54, Fig. 135 depicts a plan view of the floor of the two
halves of the gondola almost from the middle to the ends, i.e., OVer
a length of 34 meters (top two diagrams) .
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The bottom diagrams are cross sections through the gondola
and its floor.

Fig. 13

It is clear from the layout that each square meter of the
floor will have four hangers at the corners, by which it will be
suspended (only at the ends of the gondola are the hangers spaced
more closely). These constitute an extension of the ties forming
the tensioning system (cf. the third drawing) and are supported at
the top of the envelope where the gas pressures may be up to 5 tons.
The hangers are marked with circles in the drawing. There will be
219 of them distributed over the gondola. They will present no
obstacle to the movements of the passengers and crew, since there
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will be one meter clearance in between except at the ends of the
gondola.

Not only the floor, but also the bunks, tables, cabinets,
seats, and access ladders or stairways will be supported by these
members. This will reduce thelr weight. They may even be made of
light fabric or mesh. The double bunks are spaced one meter apart;
the lower one is half a meter above the floor, the upper one 2
meters. Only the lower berths are shown in the first two drawings.
The upper berths are not indicated, but they occupy the empty spaces
in the drawing at a height of 2 meters. Thus they will not hinder
the free passage of those on board either. Passengers and crew will
have to twist and turn a little, but their movements will not be
seriously impeded. Only at the ends of the gondola is the free
space reduced to half a meter.

The bunks are designed for sleeping, but the lower ones will
serve as seats during the day. There will be a total of 40 bunks,
corresponding to the number of people on board. The 20 lower berths
will provide enough seating space for the passengers and crew. A
seat needs to be 50 cm square, S0 that a single bunk (2 meters long
and one meter wide) will accormodate 6 people, and still leave some
room.

The best procedure would be to make the lower bunks SO that
in the daytime they could be converted into two suspended armchairs.
People could then sit sideways and stretch their legs along the
length of the gondola; then they would not get in the way. This is
clear from the third drawing, where the bunks are shown.

The fourth drawing shows a Cross section through the floor of
the gondola to a scale of 1 :10.

Tnitially, my plan is to make the floor of separate pieces of
the strongest lumber available. The boards would be arranged with
the grain running across the gondola. They would have to be glued
and screwed together and faced with a thin layer of metal or coated
with a waterproof metal paint to prevent leaks and reduce the fire
hazard. The variable thickness (clearly indicated in the drawing) is
intended to save weight.

Longitudinal members would run along the edges and through the
center of the floor, to provide greater strength. The center beam
would be very heavy (and also provisionally of wood). It would also
serve as a support for the cables (guide ropes) used in handling the
dirigible and in mooring the craft to the tower or mast.

Tn order not to make the floor too heavy and at the same time
as a safety precaution, the underside would have to be reinforced
with a layer of tough steel wire mesh. This mesh would form a sort
of safety net if the floor were damaged.

Naturally, in due course the floor would be made of metal, but
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for the time being a compromise is in order.

Cables attached to one or both bases (Pig. 1 and Fig. 11)
could also be used for mooring.

But a more convenient method would be to couple the gondola to
the mast directly, since this would mean that the mast need not be so
high; the task of maintaining the horizontal trim can be assigned to
the tensioning system. The embarkation of passengers will also be
easier. The stopping of the motors when the ship is moored to the
mast must be accompanied by the simultaneous disembarkation of the
passengers, and, in general, by an equalization of the 1ift force.
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Fig. 14

55. Fig. 14 shows the positions of the motor, temperature
regulator, and heating tube. We also see the windows and doors and
gondola connections (to an exaggerated scale).

56. Details of the design of the temperature regulator are
glven in Fig. 15. The motor is schematically represented. The upper
drawing gives a longitudinal section, and the lower drawing a plan
view.
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The outlets for the cylinder gases must be surrounded by a
special gasproof housing, through which the gases are brought to the
temperature regulator, consisting of a square duct. A rectangular
baffle is free to rotate in the duct; this either seals off the duct,
preventing the further upward passage of hot gases (when the baffle
plate is raised), or flaps against the large opening in the duct,
permitting the gases to flow freely into the dirigible heating tube
(vertical position of the plate). In the first case, all the hot
gases will be ejected, and the hydrogen in the dirigible envelope
will receive almost no heat. In the second case, on the other hand,
all the gas will be deflected into the heating tube, and almost all
its heat will be transmitted to the dirigible. In the intermediate
case, part of the combustion products will be ejected, while the re-
mainder will be allowed to enter the heating tube. It is clear that
the degree to which the hydrogen is heated will depend on the in-
clination of the baffle plate.

This plate is rotated by a gspecial handle coupled to a gradu-
ated dial. The dial indicates the angle of inclination of the plate
or the average temperature obtained as a result of heating the
dirigible.

To improve the distribution of the heat of the exhaust gases
in the dirigible and minimize losses, the temperature regulator and
the heating tube must be brightly polished, inside and out. But the
interior will soon be dulled, so that for the most part we shall be
concerned with the shine on the outer surface, which may even be
covered with a very thin sheathing material shiny on both sides.

The base of the dirigible must also be shiny on the outside, and
only the part covered by the heating tube should be black; in fact,
the lower base itself should also be black on the inside. But the
envelope of the dirigible could profitably be made shiny both inside
and out.

Naturally, the parts of the bases lying closest to the tempera-
ture regulator will be subject to the most intense heating. They
should be made thicker (over a short length), or, to achieve greater
economy, they might be covered by a layer of some substance which will
not be corroded by the combustion products.

57. The gondola has two motors, two temperature regulators,
and two heating tubes. One heating tube is usually fully utilized,
i.e., run at the highest temperature by closing the opening in the
side of the duct. The other 1is used to regulate the temperature, i.e.,
it will sometimes be throttled down, thereby lowering the temperature,
and at other times be opened up, thereby raising the temperature (de-
pending on the requirements).

In other cases, both regulators may have to be adjusted at the



[

450

same time. On cooling, the combustion products will form water,
among other things. At the lowest point of the heating tube there
will be a sump to collect this water. The weight of the water (when
all the combustion products undergo cooling) will be close to the
weight of the hydrocarbon fuel consumed, and will be useful for
maintaining the time of the dirigible, as will the variable tempera-
ture of the envelope gas.

It would be most convenient to open the forward regulator
fully (i.e., to let all the combustion products flow into the heating
tube). Then all the heat of the forward motor would be available for
heating the dirigible, and there would be no need to exhaust com-
bustion products in the nose section of the envelope, where their
ejection might disturb the passengers and foul the dirigible. On the
other hand, combustion products exhausted astern (in the tail section
of the envelope by means of the other temperature regulator) would
be entrained by the slip stream without affecting the gondola and
its passengers.

Our dirigible will be unable to ascend unless at least one
motor is working. Similarly, if both motors were to stop in flight,
the dirigible would begin to sink slowly. But it is difficult to
conceive of a case where both motors would stall at the same time.
One of them (the one still operating) would prevent the dirigible
from sinking. If both the motors were to stop, the dirigible would
glide down in an inclined position, like an airplane. Its enormous
surface would do the duty of wings. However, descent over a wooded
area, at sea, or in unfamiliar terrain would be risky.

Ballast might be released in order to stop the descent, but
our dirigible would carry no ballast (cargo which is useless in any
other respect). Moreover, this ballast would have to be carried in
amounts of about a ton to be useful, and it is uneconomical to store
it on board. To Jjettison gondola equipment and fuel would be even
more senseless.

But many ways could be found to avold an emergency landing.
For example, a stand-by auxiliary motor could be started up.

This seems to be the most practical approach, since it would
simultaneously provide the translational motion also necessary to
insure a safe descent.

While the stand-by motor drives the same propeller, the main
motor could be repaired. It will occasionally be necessary to use
the heat of the motors and at the same time reduce the work done by
the propellers. This combination of circumstances can be successfully
realized if the pitch of the propeller blades can be varied.

58. The working cylinders must also be covered with a special
housing. A powerful stream of air blown through various openings, is
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used to cool the cylinders evenly. The exhaust air, warmed by the
cylinders, contains a comparatively small amount of heat, but may
serve to heat the gondola in cold weather or at high altitudes.
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53. The use of vertical control surfaces (functioning like
fish tails) or horizontal control surfaces (functioning like bird
tails) will be unavoidable, since they are very effective and sensi-
tive at higher forward speeds, although it may perhaps be possible
to dispense with the horizontal control surface.

As indicated in my article "Air Resistance” (printed in the
journal "Nauchnoye obozreniye" [Scientific Review] in 1903), the normal
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pressure on a square control surface is expressed approximately by

the formula P = 0.021 iSv2, where P is the wind load in kg; i is the
angle of inclination of the wind with respect to the control surface
in degrees, not exceeding 10 to 15°; S is the area of the control
surface, in square meters, and v is the flow velocity or the speed of
the dirigible in meters per second. The density of the medium is
assumed to be 0.0012 times the density of water. Assuming S =6 x 6 =
= 36 square meters and v = 22 m/sec for our dirigible, we find P =

= 366i. This means that when the control surface is inclined at 1°
to the direction of flow, the pressure on the control surface (normal
to the surface) will be 366 kg. When the inclination is 10°, the
Pressure will be greater than 3 tons. This will constitute sbout

one eighth of the entire maximum 1ift force acting on the dirigible.
A comparable inclination of the propeller axis could never yield a
vertical component of this magnitude. For instance, according to the
tables published in my article "28th year of the dirigible" (uupub-
lished), we find that at the same speed (22 meters per second) the
pressure on all the propellers of our dirigible is 509 kg. For a
l-degree inclination of the propeller axis, the perpendicular compo-
nent will be about 9 kg, whereas at 10° it will be about 90 ke.

This is 40 times less than 3660 kg.

Nor will other methods be able to compete with control sur-
faces 1n rapidity of response.

The action of a control surface is especially advantageous
not only if the surface is inclined, but also if it is curved. Such
a control surface is shown in Fig. 16 in plan and elevation. This
type of surface is hardly more complicated or heavier than a flat
surface. It is, of course, more advantageous to place it aft of the
forward propeller.

The control surface consists of a framework of flexible steel
rods with some lightwelght material (or corrugated metal) stretched
between them. 1In operation the tip of the surface is raised or
lowered by means of speclal cables. Since it is located close to
the gondola, such a mechanism can be constructed without much trouble.
A control surface of this type can dispense with hinged joints of any
kind. TIts flexibility is the important factor.

Wherever possible the control surfaces should be positioned
af't of the propellers. Then their effectiveness will be enhanced by
the air stream generated by the propellers. Such a control surface
will be particularly useful at the start of the dirigible's trans-
lational flight, before it reaches a speed high enough to take ad-
vantage of the normal airstream. The propeller, on the other hand,
immediately develops its greatest efficiency (i.e., sets air in
motion).




k53

A forward control surface would be less effective than one
positioned aft of the propeller, and only the proximity of the pro-
peller and ease of construction could somewhat offset this disad-

vantage.
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We could also position the horizontal control surface aft of
the stern propeller; but this is not as convenlent or economical
with regard to weight. By putting it in front it might be possible
to increase the surface area.
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In large dirigibles with a gondola extending the length of
the envelope, entirely different arrangements would be required.
At the beginning of forward flight, when the speed is still low and
the horizontal control surface is operating at low efficiency, non-
uniform tensioning of the envelope would be required to maintain
horizontal stability.

If it proved impossible to do without a horizontal control
surface, it would be advisable to mount it at the stern, as indi-
cated in Fig. 17.

60. Fig. 17 gives an idea of the possible design of a
flexible vertical control surface of the same size as the horizontal
control surface. It features two slender rods mounted perpendicular
to the surface at one end. Lightweight cables, whose function is to
apply tension, thus bending the flexible surface so that pressure is
exerted on it and the course of the airship corrected, are attached
to the rods near the ends. In general, the construction of the two
types of control surface is the same, except that the after system
is somewhat heavier. On the other hand, this system will work more
efficiently because it is located aft of the propeller. A horizontal
control surface mounted on the other side of the rear propeller is
shown in the same drawing. This will operate at a slightly lower
level of efficiency than the control surface situated abaft the pro-
peller. But the difference will be slight, and, moreover, it can
easily be designed to fit alongside the gondola.

The total maximum weight of all the control surfaces has al-
ready been mentioned (in describing the table). Every effort must
be made to remain within these limits in designing the dirigible.

Of course, the control surfaces may be made in the ordinary
form, il.e., flat with no capability for flexing. For a variety of
reasons flexible control surfaces are not suitable for waterborne
vessels. They are far more practical in the case of airships.

61. Figs. 11, 13, 14, and 15 illustrate the general construc-
tion of the side walls of the gondola, its windows, doors, the
mounting of the temsioning drum, the motor, and other loads.

We see how the floor of the gondola is supported by vertical
hangers over 3 meters in length. Even a heavy concentrated load
will not cause any distortion of the envelope shape, except for a
slight compression. The point is that these gondola hangers consti-
tute a direct extension of the members of the tensioning system.
Thus, the load on the floor is transferred to two or three of the
hangers supporting the gondola. These in turn transmit the load to
two or three of the lower members of the tensioning system. This
same load is transmitted to the lower pulley, then to the upper
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pulley, and finally distributed over a considerable length of the en-
velope (8 meters). The corresponding lift force is not less than 800
kg. The gas pressure on this portion of the envelope will be much
greater, however (about 5 tons). Thus, the compression of the en-
velope will be almost imperceptible.

The motors are mounted in the same mannewr (at the ends of the
gondola). They are suspended, as it were, from the upper parts of
the envelope. The braces between the frame and the floor do no more
than prevent the motor from swaying from side to side.

Coarse wire netting lines the sides of the gondola to a level
of one meter from the floor. Tt serves to prevent the passengers
from falling out, should the gondola wall panels fail for any reason.
Above this netting is a line of windows, each of which is one square
meter in area. Still higher 1ies the roof, to keep out the wind
and eliminate excessive drag. Doors, also protected by netting and
covered with windproof material, are ;nserted between the windows.

6o. Fig. 18 also shows two safety valves in the top of the
envelope. One is closed, the other is open allowing gas to escape
in the direction of the arrows. The drawing 1s schematic. The valve
js reminiscent of a stove damper and 1s located at the surface of the
dirigible, at the end of the upper base. Only the rod controlling
the movement of the damper projects outside. Its action is facili-
tated by rollers. The edges of the damper enter an annular groove
F£illed with a seal of nonfreezing liquid (high-grade rubber could be
used instead). The effect of the weight of the valve and +the action
of a spiral spring (around the central rod), not shown in the draw-
ing, keep the valve closed. The use of a weight instead of a spring
would be effective, but uneconomical. Actually, for safety's sake
the valve is positioned near the stern of the dirigible, at a point
where the gas pressure is about 2 kg/m?. If the complete set of
valves presents a total surface area of one square meter, then a
load of far more than ol kg, say 50 kg, will be required. This amount
of dead weight 1is uneconomical. Springs would provide great savings.

How the valve operates is perfectly clear. When the over-
pressure inside the dirigible is much higher than the preset valve
and there is danger of the envelope bursting, it will overcome the
weight of the valve and the resistance of the springs and raise the
valve, thereby permitting gas to escape. But the dirigible should
never come to this pass in the first place. In response to the
slightest increase in pressure above normal the dirigible should be
made to lose height by means of the temperature regulator, or the
pressure should be reduced by means of the tensioning system. The
same procedure 18 used, mMOreover, whenever the overpressure falls
below the proper range, i.e., the overpressure cain ve restored imme-
diately by the same methods.
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63. The fuel, weighing several tons, must not be concentrated
at a single point, since this would impose serious stresses on the
bases. It must be distributed over the entire length of the gondola
in a single long tank slung underneath the gondola and divided up by
partitions.

Rod

This fuel tank might even replace the heavy beam under the
gondola floor and would prove highly economical in that respect.

The gondola is 72 meters in length. If the fuel supply is
assumed to be 5000 liters, the cross-sectional area of the fuel tank
will be less than 7 square decimeters, and the diameter of the cross
section less than 30 cm. Because of the low gondola bending stresses,
elastic flexure of the tank will be completely assured, even if there
are no transverse corrugations (so-called flexible tubes). Moreover,
the tank could also have an oval or rectangular cross section.

Longitudinal corrugations would provide enormous rigidity for
both the fuel tank and the gondola, together with considerable
savings in weight.

The weight of the tank, if 1-mm steel plate of density 8 is
used, will be 7 kg per meter. The weight of the light fuel will be
about 50 kg per meter.

Thus, the weight of the tank will comprise about L/? of the
fuel weight. This is not much, if we remewber that the tank replaces
a beam weighing not less than 5 kg per meter.

64, The power developed by the motor cannot be transmitted
directly to the propeller because of the large diameter of the latter.

1
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This is an inconvenience. A chain drive or gear system will be re-
quired. The propeller circle is actually about 18 meters.

The dirigible travels at a speed of roughly 30 meters a second.
This means that the tip speed of the propeller will be approximately
45 meters a second. Thus the propeller has to make only 2.5 revolu-
tions a second. But it is important that the engine turns at from
50 to 100 revolutions a second. This means that a gear system with
a transmission ratio of from 1:20 to 1: 40 will be required. No
such gearing would be needed if old diesel engines were used, but
this would involve heavy weight penalties.

Modifications and Simplifications

65. In my proposals I have taken the liberty of making
various simplifying assumptions. Thus, both halves of the envelope
have been assumed identical, i.e., the nose and the tail are identical
in size and shape. This means that the envelope will be symmetrical
about the center section.

No such symmetry will be possible for larger and more sophisti-
cated dirigibles: the front of the envelope will be blunter than
the stern. The drag will not be greatly reduced thereby, but the
stability and ease of maneuverability will be much enhanced.

66. Moreover, the lower base, or the bottom strip of the flat
envelope, must be made more convex; otherwise the top part of the
envelope will be more convex than the bottom when the envelope is
inflated and stretched. This depends on the two long shoulders (on
either side of the furrow running the length of the top of the en-
velope). But we shall neglect this for the time being.

This irregularity (asymmetry) will cause the nose of the
dirigible to drop, which will offset the action of the propeller, the
effect of which is to raise the nose. Thus, the asymmetry may prove
quite useful. To what degree it will be useful can only be de-
termined by experiment. But we can always achieve correct horizontal-
ity by tightening the envelope.

67. Let us take a fairly blunt-nosed dirigible as an example:
its aspect ratio is 4 in the flat form, and about 6 in the inflated
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form. Our object is to enhance the horizontal stability and simplify
the tensioning system.

68. The end of the dirigible cannot be designed in accord-
ance with the formula: it must be conical to at least 0.1 of the
semiaxis from the end¥. The table gives the derivative for a flat
envelope, or the tangent of the angle formed by the curve with the
horizontal. Clearly, from Fig. 3, the ordinate of the end must be
(cf. rows 6 and 8 of the table) 1.317 - (0.515-6) = 1.23 meter.

From the ordinate corresponding to the abscissa (0.9 Xl)’ we
subtract the product of the segment O.1 x), or 6 meters and the tangent

of the angle. This means that the terminal rectangle will be 2.4
meters high. If the ends of the envelope are extended by a fraction,
they will become 2 meters high, i.e., equal in height and breadth

or square. But there is no need to do this.

69. In the more sophisticated large dirigibles the gondola
will extend the entire length of the envelope. The upper base of
the envelope will also be fully accessible. The propellers and motors,
however, will be differently arranged. In large dirigibles the number
of both motors and propellers will be increased.
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V. SEQUENCE OF PRACTICAL OPERATIONS IN THE
CONSTRUCTION OF A METAL DIRIGIBLE

I assume the sequence of operations in the construction of a
metal airship to be as follows.

1. The construction of scale models of a dirigible which
do not fly and cannot vary their shape or volume. The dimensions
are 5 to 30 cm in height and 30 to 180 cm in length. Apart from
the corrugations and the other comparatively fine details, the
scale is constant, and the design similar (the last of several such
models so constructed [a dirigible with a volume of 3,000 cubic
meters] is shown in the photograph in Fig. 19 [see also the 8,000
cubic meter models, Figures 20 and 21].

Fig. 19.

2. The construction of partially elastic nonflying models,
i.e., models capable of varying their volume and shape slightly
without being deformed. The dimensions are 30 to 100 c¢m in height
and 180 to 600 cm in length. The scale is variable. Exact similarity
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is not observed (caricature). The envelope alone is built. One of
these models (in brass) [1924] was only 30 cm in height and almost
completely elastic,

Fig. 20.

3. Models of nonflying envelopes which are capable of
varying their volume and folding flat without suffering any deformation.
Such envelopes may be completely deflated and then reinflated an in-
finite number of times with no deterioration. The proportionality
or similarity to & real envelope is more faithfully observed, The
dimensions are 1 to 4 meters in height and 4 to 16 meters in length.

Fig. 22 is a picture of & brass model (in the flat form) one
meter high and 4 meters long, fabricated by the author in 1925;
the picture is taken in the author's garret. The side wall is 0.1 m
thick. A second elastic bronze model measuring 10.2 by 0.3 meters in
the flat form with side walls 0.15 mm thick was constructed in 1926
on the basis of my drawings. It was assembled for the first time
without raising the envelope, by & method which is a simplified
vegsion of that described below (cf. section 6 and Figures 31 and
32).

In 1931, the first electric-welded elastic envelope, one
meter high and 6 meters in length, was built. Its side walls and



Fig. 21

[sign reads: Model of Tensioning Systen]

Fig. 22.

61



Fig. 24,
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half-tubes were made of carbon steel 0.1 mm thick, while the re-~
meining parts were made of stainless steel 0.2 mn thick (Fig. 23)-
The lack of mobile welding machines forced us for the time being to
resort to reversing the envelope during assembly, something which
could not be done in assembling an airship envelope.

BRI Y R R LY L)

Fig. 25.

The first all-welded stainless steel envelope was built in
193%3; it measured 11.3 meters in length, but in other respects had
the same dimensions and order of assembly &as the 1926 model.

A general view of this envelope is shown in Figures ol and 25.
We see the envelope in two stages of inflation, 10 and at 200 mm Hg

respectively.

Lk, All the components are full size, including: the corrugated
surface of the envelope side walls, the hinged jolnts, the pulleys,
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Fig, o71.
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cables, gondola components, control surfaces, temperature regulators,
tensioning drums, safety valves, etc.

5. Machinery for the rapid, high-precision, and inexpensive
fabrication of full-size components. Here, among others, I have in
mind welding, corrugating, pressing, and rolling machines of different
sizes, function, and design.

Figure 26 shows a compressor used in checking the tightness
of the seams, against a background of an assembled envelope, and
Fig. 27 shows the process of checking the seams of an inflated en-

velope.

Fig. 28.

Figure 28 shows a model of a mobile "two-wheeler" welder
for the electric welding of panels of any size. In the rear ve
gsee an envelope 11.3 meters in length, fabricated solely with the
8id of this model. The subsequent "velocipede" type welding
machine for welding locked envelope seams 1s shown in Fig. 29.
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Fig. 29.

Fig. 30 shows the arrangement of lever-type strain gauges
for studying the stressed state of the bases (longitudinal strips
or bands) in corresponding various levels of the gas pressure in
the envelope.

6. Docks for the construction of gondolas and metal en-
velopes. A gondola drydock consists of stands of moderate height
from which the gondola is suspended and which the gondola is sus-
pended and which provide scaffolding for its construction. The
dock for the envelope is a more or less flat and horizontal plat-
form, or even & smoothed and cemented dirt surface.

Figure 31 shows the layout of an envelope drydock in plan

form, The thick lines across the envelope indicate the outlines of

individual sections of the side walls.

The bases (longitudinal strips) are assembled on long
tables at each side, and the squares at the ends of the envelope
show where the nose and tail pileces are preassembled,

The dots around the envelope represent short columns for



Fig’ 30-

Fig. 31.
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raising the envelope during inflation and hoisting operations.

Fig. 32.

Figure 32 shows, in cross section, successive stages in
inflating the envelope on & flat, slightly inclined platform,
based on studies of air-filled models iImmersed in a tank of water.

The dead space in the deflated envelope with collapsed side
walls (top figure) is flushed out with hydrogen, after which the
inflation operation commences. When the amount of gas is almost
sufficient to 1ift the envelope, the envelope rises automatically
into the vertical position. Then the envelope is filled up and
checked out, after which the gondola is suspended from it.

T. Flying envelopes of simplified design, with no gondola
attached. 2 to 6 meters in height, 8 to 18 meters in length,

Figure 33 shows an all-welded flying envelope 1,080 cubic
meters in volume and T meters in diameter, made of steel 0.1 mm
thick and measuring 0.36 to 1l.44 meters when assembled, under-
going static tests. The building of the envelope was completed
on September 15, 1935, 4 days before K. E. Tsiolkovskiy died.

8. Models of flying dirigibles carrying a gondola plus
a small load in the form of simplified control elements, but no
crew or rassengers, slightly larger in size than the previous
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models.

9. Dirigibles capable of carrying 1 to 5 people. These are
gimplified, very flimsy in construction, impractical, and offer no
significant advantage. They are built solely to gain experience in
construction. They measure T to 10 meters in height and 28 to 30
meters in length. o

W B A fﬂ.é-e-\‘_

¥

Fig. 35.

10. Dirigibles of less flimsy construction, easily con-
trolled and maneuverable, but even less practical and less economical.
They measure 10 to 15 meters in height and 40 to 75 meters in length.
They are capable of carrying 5 to 15 people. The construction is
almost complete, with a few minor simplifications.

11. Practical dirigibles., The larger these are the more
effective and economical they will be. Completely equipped. 15 to
50 meters in height and 90 to 300 meters in length, reaching the
proportions of an ocean liner. Capable of carrying anywhere from
17 to 1,000 persons.
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The theoretical limits of dirigibles, given the present state
of the art, extend to 300 meters in height and to a passenger and
crew capacity of 200,000 persons.

The air leviathans would be comparable in height with the
Eifel Tower,

The first three steps have been taken already. If this has
not been done in an entirely satisfactory manner, the reason lies
in the inadequacy of the materials, lack of experience, and de-
fects in the equipment. Equipment for welding envelope components
is now being fabricated (the completed models have been scattered
over various sites, in some cases damaged during transportation or
while on display at expositions; in general, it would be advisable
to rebuild them from scratch).

The fourth operation has already been begun and should not be
delayed as the material conditions are favorable. This involves
pattern work based on working drawings and tables.

The fifth step is a highly important one, since on it depend
the speed, costs, and quality of construction. It would be desir-
able to complete this stage before beginning the construction of
practical airships (even though such airships could be constructed
without the aid of specially devised machines).

Using known means of improving dirigible parts, we could use
these data to fabricate the corresponding machinery. Foreign
designers might be of some help here, but the problem is so simple
that, it seems to me, we could get along perfectly well with our
own.

The construction of flat docks and small gondola docks
(sixth step) presents no problems.

The next or seventh step -- the construction of flying models
-~ 1s a rather delicate matter, but is entirely realizable given the
availability of sufficiently thin materials and the appropriate
technical means.

The next steps (eighth through eleventh) could be taken quite
rapidly after the fifth, since everything depends on the machinery
available (i.e., speed and quality). The aerostat components are
neither intricate nor irregular, so that the production of the
proper machine tools would present no great difficulties.

The gradual nature of the steps in question not only frees
us of exorbitant expenses and unproauctive effort, but also goes

a long way to simplifying the construction of large practical
dirigibles, This preparation, which costs practically nothing as
far as materials are concerned, frees us of the burden of costly
errors and fajilures.

The completion of the first step gives us & general ides
of the shape and layout of metal dirigibles made of corrugated
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metal, as well as some idea of the relative dimensions of the
dirigible and its constituent parts. This is primarily an artist's
concept of the airship.

The second stage demonstrates the possibility of construct-
ing a metal envelope capable of varying its volume and shape without
detriment to the integrity of the dirigible. The third step illus-
trates the same possibility, but more thoroughly. The fourth step
constitutes a preparatory step toward the construction of the
necessary mgchine tools. It will also provide some ides of the
natural size and strength of the principal parts of the airship.
The gondola and controls will be almost complete in form and built to
full scale.

In the fifth stage, we strive to simplify the parts and the
machine tools required to produce them. This could save quite a bit
of time,

In the seventh step the aim is to construct a simplified
flying model. This stage must be gone through, since it gives us
a clear picture of the relationship between the strength of the
envelope materials, the gas pressure and the gravity loads. Tt
may also give the first practical hint as to the true stability of
the dirigible.

The remaining step serve as preparatory stages for the
accumulation of experience and the avolding of unnecessary effort,
expense, and loss of life.

A dirigible is an enormous undertaking and its usefulness
is in no way limited to military purposes. It deserves attention
and serious work. This is beyond the powers of a single individual
or a single specialty.

The work of building dirigibles must be distributed among
experienced, knowledgeable, dispassionate, young and vigorous
workers roughly as follows,

1. Materials selection and testing.

2. Rolling of sheet, rods, etc.

%, Punching and stamping of sheet metal.
4, Wires and cables.

5. Electric welding.

6. Oxyacetylene welding.
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10.
11.
12.

13.

doors, and

Fat drydock for constructing dirigible envelope.
Hinged joints.
Tensioning system with special motor.
Safety valves.
Iow dock for gondola.
Gondola flooring.

Main gondola rods, safety netting, sheathing, windows,
passenger accommodation (heating, armchairs, bunks, pro-

visions, etc.).

1k,

Propeller-motor unit with temperature regulator and

heating tube.

15.
16.
1T.

18.
gondola.

19.
20,

21,

Vertical and, if required, horizontal control surfaces.
General assembly of dirigible envelope.
Supply of hydrogen.

Inflating envelope with gas and coupling envelope to

Mooring masts and mooring towers.,
Control of dirigible in flight.

My general supervision through the intermediary of

Comrade Rapoport.

All participants in the project should be familiar with the
overall plan.

Model makers must make models of the complete dirigible and its

parts for the visual training of their co-workers.
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L. COMPENDIUM OF THE CORRUGATED STEEL DIRIGIBLE¥
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#1931, 1In order to minimize repetition we have reproduced, with new
numbers, only Figures 18-27 from Tsiolkovskiy's previous Works.
Cf. editor's notes at end of book.
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Fig. 3.

Fig. 1 - Fig. 3. 01d projects. Longitudinal and
transverse sections and view of gondolas from
below,

| e ot A R RS AT T e I T

Fig. k.

Longitudinal section through a 200-man dirigible.

Fig. 5.

Housing for tensioning drum.




Fig. 6.

Floor of gondola.

Fig. T.

Transverse section through
multistory gondola.
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TT. NOTES ON USE OF TABLE

1. Height of inflated envelope, without bases, in meters.
The beses will increase this height, but since the dirigible 1s
£illed to only ¥l of its maximum volume, the true height of a
dirigible on the ground will be even less than the figure given.
The greatest height given in the table is 6 times less than the
height of the Eifel Tower and twice the height of a full-grown
pine tree. Note that the figures in the table represent meters
end kilograms where other units are not specified.

The height of the dirigibles is astounding; but to begin with
we shall construct small ones, proceeding gradually to the larger
sizes; secondly, the construction work is done on a horizontal
surface; this 1s not only convenient, put the reader will also note
that & dirigible on the ground will not frighten anyone with its
gize. When completely inflated with hydrogen the dirigible will
hang suspended. In general, one should remember that all parts of
the dirigible are suspended, i.e., they are in tension and not in
compression, &as would be the case with & ship, for example. This
is & tremendous strength-enhancing factor, minimizing the weight
and greatly simplifying construction.

N

5. The maximum width of a flat envelope under construction
pefore inflation; it ig 1.57 times greater than the first row of
figures. The construction platform must be 30 % broader, to ac-

commodate the bases.

3, ILength of dirigible. The platform is slightly longer.
The length of the largest dirigible is comparable with the length
of an ocean liner, and the height is slightly greater than the
width of such a vessel. The length of the dirigible is six times
its height. Zeppelins of this size are already being built.

4., The width of the envelope bases. This comprises 10 %
of the envelope height, and ranges from 1 to 5 meters. It is
more advantageous to make the bases wider in the middle than at
the ends. The longitudinal strength increases one and & half times
and the 1ift force shows & three percent gein. The bases &re
assumed rectangular and of uniform width. They are the same length
as the envelope.

5. Surface area of corrugated envelope. This surface area
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is three times that of the center longitudinal section.

6. Surface area of the two bases., This comprises 11.5 %
of the area of the corrugated side walls.

T. Total surface area of gas bag.

8. 3/k of total volume of gas bag. Inflation to 75 % will
enable the dirigible to rise an altitude of 2 km and to hover, if
necessary, at that altitude, with no loss of gas in the ascent. The
volume of the largest dirigible listed here is twice that of the
planned giant Zeppelin. The average metal dirigible is comparaeble
in volume to g zéppelin of 50,000 cubic meters.

9. Lift force of dirigible. The air density is assumed to
be 0.00129, gas density 0.00009, i.e., 14 times less. This is for
the case of hydrogen, The 1ift force per cubic meter is 1.2 kg.
It is, of course, less at high altitudes and at above-zero tem-
peratures, and greater below sea level and in below-zero weather.
It also increases as the atmospheric pressure increases, The 1ift
forece is equal to the weight of the dirigible and all its contents
exclusive of the gas.

10. Number of persons carried on board the dirigible. This
ranges from 5 to 610 persons. 100 kg allows for one person and
baggage. The weight of all the passengers and baggage is assumed
to be one-fifth the 1ift force, i.e., 20 %. The crew will not
number less than nine; the aerostat, consequently, may carry
only eight bassengers in the case of an envelope 15 meters high,
and some profit may be expected. The crew will be relatively less
numerous on large dirigibles, 50 that these will yield greater
profits.

11. The surface area of the dirigible per person carried.
This varies from 304 to 63 square meters and expresses the relative
friction or resistance encountered by the envelope in its motion
DEr passenger or crew member. The surface ares of both sides of
the wings of an alrplane is not less than 30 square meters, while
the fuselage presents no less than 20 square meters of external
surface, This means that the friction alone on an girplane is close
to the friction on the surface of a dirigible 50 meters high. But
the aeroplane creates an enormous drag due to the struts and other
Projecting parts almost completely absent from a dirigible, More-
over, the airplane expends a great deal of energy in keeping itself
aloft, i.e., in counteracting gravity, which is no problem for a
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dirigible. On & large dirigible, 63 square meters of metal sheet
enclosing hydrogen will carry a passenger or crevman and the cor-
responding part of the gondola together with all the controls.
These 63 square meters are equivalent to the surface of a cubical
carriage with sides sbout 3 meters long.

The surface area per passenger Or Crewman will always en-
close 40O cubic meters of hydrogen. This will do the job of
carrying one man with all his requirements, his baggage, and the
motors, 400 kg of inexpensive metal, and the same 40O cubic meters
of gas will support and carry the man and his baggage indefinitely.

The 400 kg mentioned include the emvelope, the gondola, the controls,

the power plane, and everything else required.

12. The area of the maximum cross section through the en-
velope, ignoring the bases and the depression in the top. The
true area is slightly less. Tt also expresses the drag opposing
the motion of the dirigible. But the envelope tapers, SO that the
true resistance will be at least 25 times lower. This area is
19.4 times less than the surface area of the dirigible, or 5.6 %
of the latter. The area of the principal longitudinal horizontal
section is less than the surface area of the envelope by a factor
of three, if we ignore the bases. This section expresses the re-
sistance to the vertical motion of the envelope.

13. The previous figures reduced 25 times. They express
the drag experienced by the dirigible in its translational motion.

14. The same areas divided by the number of persons carried
on board, i.e., the drag per passenger oOr crewman. This factor is
very emall and decreases as the size of the dirigible increase.

In the case of a large dirigible it will be less than the resis-
tance experienced by a man skating on ice, OTr in general by &
man moving through still air at the sane speed as the dirigible.
But since the speed of a dirigible 1s considerable, we assume
about T hp per passenger to overcome the atmospheric drag. At
first glance it seems strange that the relative drag on & large
dirigible should be less than the resistance offered to a human
body. But the latter need not be considered at all when the
passengers are actually on board, for they will be shielded from
the wind by the gondola with its extremely low drag.

15. The total power of all the airship's motors, taking
%/3 hp or 100 kg/sec as the unit, It amounts to 3 thousand metric
units or 4 thousand ordinary units, whereas an airplane carrying
two passengers requires 150 units, and a one-seater airplane re-
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quires 75 units. Our large dirigible will carry about 600 passengers,
This means only 7 hp ber passenger, or one-tenth that amount.

The determination of the power is based on & long series of
calculations and experiments on drag. The power is modest, since
the hull and the gondola of the dirigible are smoothly shaped with
no folds or irregularities. The high and slender gondols serves
excellently as a keel, while horizontal control surfaces will prove
to be almost superfluous, as we shall see. The resistance offered
by the medium is consequently minimal.

16 and 17%. The weight of the motors. We assign a much
larger weight to dirigible motors than to airplane motors, in fact,
almost ten times as much. On the other hand, good performance and
long service life are to be expected from these motors. Moreover,
this can be achieved even if the motors weigh 5 kg each per metric
unit. The figures listed here can then be halved. In practice,
though, following the example of airplanes, we may reduce the
weight of the motors on the largest dirigible to 3 tons.

We assigned 10 % of the total 1ift force to the motors, but
if light-weight motors are used only 5 % or even a figure as low as
1 % of the 1ift force need be made available for them. These last
motors will, of course, be less reliable than airplane motors.
However, the failure of airplane engines threatens worse consequences
than the failure of dirigible motors, since the former would mean a
crash or & dangerous glide. Engine failure on board s dirigible
would also require s landing; but, firstly, the landing would not
be absolutely inevitable, and, secondly, it is difficult to con-
ceive of a situation where both motors failed simultaneously.
Stalling of one motor would hardly be noticed, so that lightweight
motors would be of far greater value to a dirigible than to an
airplane,

18. The bressure exerted on the dirigible by the air stream;
it is equal to the pressure on all the rotating propellers and com-
Prises only 3.3 % of the total 1ift force; it is therefore 30 times
less than the 1ift force, or 6 times less than the weight of pas-
seéngers and crew, since these account for one fifth of the 1ift
force.

The pressure acting on the propellers as a result of their
rotation and the pressure exerted by the air stream on the hull
and gondola constitute two equal and opposite parallel forces, i.e.,
& couple. This couple must be balanced or the nose of the dirigible
will rise.
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19. The speed, per second, of the dirigible.

50. The speed of the dirigible in kilometers per hour., This
figure varies from 62 to 106 km. There is a possibility of increas-
ing the engine power of small dirigibles by 8 times. The speed
would then be doubled and be almost twice that of an airplane. This
is also possible in the case of large dirigibles.

21-23, The gas pressure, Or, more accurately, the pressure
difference of the gases inside and outside the envelope, per SQuare
meter; the range 1s 6 to 90 kg. This pressure is given for the
low, middle and high points of the envelope. The pressure is the
same for any horizontal plane Cross section or at any height. It
is proportional, in general, to the height of the gas above the
low point of the envelope plus a constant pressure. This constant
pressure depends on Us, i.e., on the tensioning forces to which the
envelope is subjected. In our case the low, middle, and high
pressures bear the ratio 1 : 2 : 3 to each other. But if the
tensioning is intense, a different ratio may result, for example
2 : 3% : L4or 11: 12 : 13. For the largest of the dirigibles
listed in the table, the average pressure will be 60 m2. The
figures given also express the gas pressure 1n milimeters of water
column.

ol. The total longitudinal gas pressure on the maximum cross
section through the envelope. It constitutes 383.6 % of the 1ift
force and is therefore quite large. Of course, it falls off rapidly
toward the ends. It must be palanced by the tension in the longi-
tudinal base strips and the corrugated side walls of the dirigible.
The tension in the latter is variable, for it depends on the ex-
tent to which the envelope is inflated with gas and on the force
applying tension to the envelope. Therefore the longitudinel bases
are likewise subjected to a nonuniform tension. In calculating the
strength of the envelope, the best procedure is to ignore the re-
sistance of the corrugated envelope surface.

o5, The longitudinal tension in the corrugated envelope.
on the basis of formula (339) given in my article "Theory of
the Aerostat,” we can compute the tension from the data of the
teble and text concerning the corrugated surface. Comparing this
tension with the total pressure exerted by the gas on the trans-
verse section, we find that the elasticity of the corrugated sur-
face sccounts for at most an insignificant gas pressure in large
airships: viz., 60 % for a 10-meter envelope, %0 % for a 20-
meter envelope, and 15 % for a 4O-meter envelope, and so forth.



Accordingly, the resistance of the corrugations may be left out of
the calculations, and attention centered on the bases. However,
by reducing the size and shape of the corrugations, we can increase
their strength; only this reduces the elastic limit; bdbut in our
case the strength is in general excessive and may even be halved,
since in practice the envelope is not folded flat. If the size

of the corrugations is halved, the tension in the envelope will
now constitute as much as 120 % of the gas pressure, i.e., it will
greatly enhance the strength of the dirigible, especially near the
ends,

26 and 27. The tension in the bases due to the gas pres-
sure, when the strength of the envelope is neglected., The sum of
both forces must equal the gas pressure., The two forces are in
the ratio of 9 : 7. However, the tension also depends on the ten-
sioning force applied to the envelope; the greater this force the
closer to unity the ratio of the two tensions. The tension at
other points in the bases will be the lower the closer these points
lie to the ends or the smaller the corresponding cross-sectional
area of the envelope. It would seem uneconomical, then, to make
the strength of the bases equal throughout their length., The
strength could be gradually reduced toward the ends, but not too
much, since the gas pressure will increase at the ends in response
to random tilting of the dirigible.

28 to 30. The transverse tension in the envelope per linear
meter varies as a function of the size of the dirigible and the
level of the horizontal section for the same envelope. Tension is
given for the low, middle and high points. The velues are in the
ratio of 7 : 8 : 9. :

31. Envelope thickness and material of the half-tubes. The
thickness 1s expressed in millimeters. If the envelope is x meters
high, it will be x hundredths of & millimeter thick. It is made
of either iron or steel. If made of duralumin, it will be three
times thicker.

32, The thickness of the bases and of hinge material will be
tripled.

33. The longitudinal strength of the envelope decreases
several-fold with size, if the width of the bases also increases,
so that the 1lift force of the dirigible increases by almost the
same amount, making the dirigible capable of lifting anything it
could 1ift before.
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zl, Transverse gtrength, It is twice &8 great.

35a.. Total depth of envelope corrugations, in centimeters.
Iength of corrugations 2,7 times as much .

35h, Length of corrugations, in centimeters.

%6, Width of strip from which hinges are formed. This width
ig 10 times the corrugation depth. The thickness of the hinges is
the same as that of the bases. The strip is made double width and
drilled in this form, after which it is cut in two. The two halves
form a pair that is glipped over the hinge rod. The weight of the
hinges accounts for 2.2 % of the total lift force. Their strength
is appreciable. They account for about 20 % of the strength of the
bases.

37, The width of the strip forming the half-tubes. This
is 8 times the depth of the corrugations. The weight of the half-
tubes is estimated at 0.26 % of the total 1ift force.

38. The weight of one square meter of the envelope side wall,
with 10 % added to take care of weld metal and corrugations. The
thickness of any type of dirigible envelope is more Or less pro-
portional to the linear dimensions of the dirigible. Thus W€ see
that in the case of the largest 300-meter dirigible the corrugated
envelope is made of material of the same thickness gas roofing

metal. The corrugations and welds add 10 ¢ to the transverse
strength of the envelope.

%9, The width of the gondola, Or the width of its floor.
In the case of dirigibles 15 meters tall, the gondola will broaden
out upwards in order to match the wider base of the envelope. The
width must be adequate to accommodate the upper berths and sus-
pended seats. There will be enough room for free circulation.

L0, Minimum height of gondola; because of the curvature
of the dirigible in the direction of both bow and sterm, the
gondola will be taller at the ends, allowing for the possibility
of installing large-diameter propellers at these points. This
will make it possible to increase the efficiency of the propeller-
engine unit.

41. Number of floors in gondola. Only two floors in the
largest gondola.
Great height helps to meke space for the overhead bunks
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and heating tubes,
L2, Propeller diameter.
43 and L, Length and floor area of gondolas.,

45,  Floor aree per passenger. This will be extremely large
for the smallest dirigible, but will fall to about 2 square meters
for the largest, If overhead bunks are used, this is entirely adequate
to provide each bassenger with & spacious berth and pPlenty of floor
space for chairs, tables, and free passage,

b6, wire thickness, in millimeters. 10 wires will run up-
ward and 10 downward to the right and left of each pulley; in all
there will be 20 wires, The six systems will account for 120
fairly thick wires. The cables may be lighter. Near the bases the
thick wires may branch out into thinner and more numerous wires.

W7. Tension in cables, in kilograms. This tension will be
reduced by half when there are 20 pulley blocks in each tensioning
system. The range is from 20 to 2,500 kg. The cables are wound on
drums to provide tensioning by means of an auxiliary motor. In small
dirigibles not much tension will be required; the figure will be
only 160 kg even in the case of g dirigible carrying 39 persons,
However, the design of large dirigibles might involve changes,

48. Depth of longitudinel girders, in centimeters, When
the dirigible envelope is inflated, all the longitudinal members
of the dirigible undergo flexure. Cracking and deformation will
not occur if adequate tube stiffness, longitudinal corrugations,
ete., are provided.

In pbractice, this depth could be much greater, since appre-
ciable bending will bccur only on the one occasion that the
dirigible is filled with hydrogen, when a certain deformation is
permissible. Subsequently, the bending will be quite insignifi-
cant. For the first practicable dirigible the diameter of the
tubes should be 10 em.

Lbox, Cost of dirigible. The bulk of the dirigible's

e —————— -

*¥See editor's note at the end of the book.
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mass will consist of the simple metal envelope and gondola. This
mass should not exceed 70 % of the lift force (ef. column 9);
1 kg of mass-produced iron should cost hardly a kopeck.

70 % of the lift force, in the case of & dirigible 300 meters
in length, will mean about 220,000 kg or 2,200 rubles. There re-
main the motors and the hydrogen, but these will not be as ex-
pensive as they are now, after production techniques have undergone
enormous improvement. This means that the cost of dirigibles may
fall to one-tenth the figures cited as the state of the art advances.
On the other hand, however, for the first attempts at dirigible
construction the costs will probably be 10 times those estimated,
particularly in the case of the small dirigibles, with which we
shall inevitably have to start.

50 and 51%. The useful work done by the dirigible annually,
and the cost of that work. Carrying 100 kg over 1,000 km is taken
as the unit of work. Compare the cost (51) of the work done to
the cost {49) of the dirigible. The reader will reedily see that
the latter is negligible for a dirigible 10 meters tall, but be-
comes 2-1/2 times greater than the cost of the dirigible for the
next craft listed. Subsequently, it becomes 4, 5, 6, 7, and 8
times greater, .

#See editor's note at the end of the book,
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EDITORS' NOTES ON THE WRITINGS OF

K. E. TSIOLKOVSKIY

CONCERNING DIRIGIBLES

I. THEORY OF THE AEROSTAT

The bulk of this work is contained in an unpublished manu-
script written in 1886 (and preserved in the author's personal
archives). The gradual publication of this manuscript over a period
of years was accompanied by revisions, replanning and re-ordering
of the material, and partial changes in the text. A portion of
the manuscript, bearing the general title "Theory of the Aerostat,”
was included in the book "The Metal Dirigible,"” published in 1892
(first edition) and 1893 (second edition); another portion was
published in the article "Independent Horizontal Motion of a
Dirigible" in the journal Vestnik opytnoy fiziki i elementarnoy
matematiki [Bulletin of Experimental Physics and FElementary Mathe-
matics], Nos. 258-259 (1898), Odessa, but the largest portion of
the entire manuscript was published in the journal Vozdukhopleavetel'
[Aeronaut] during the years 1905 to 1908, under the heating "The
Aerostat and the Airplane."” The chapter in the manuscript relating
to the horizontal motion of a dirigible was re-edited by the author
in 1912 and given the title "Motion of a Dirigible" [Dvizheniye
aeronata]. In this last version it is now reprinted here as
Chapter XIV, "Motion of an Airship.” A portion of the article
dealing with the heating of the envelope gas was prepared for the
press as the concluding chapter in the séries "The Aerostat and
the Airplane.” 1In the present edition, it is included in the
"Theory of the Aerostat'"section as the concluding chapter (XV) of
this far-ranging work (cf. notes on Chapter XV).

The text of Chapters I to XIII, "Theory of the Aerostat,”
was taken from the book "Selected Works of K. E. Tsiolkovskiy,"
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[Izbrannyye trudy K. E. Tsiolkovskogo], prepared for the press in
1932-1934, edited by Ya. A. Rapoport under the direct supervision
of the author (ONTI [Scientific-Technical Press], Gosmashmetizdat

[State Machinery and Metallurgy Press] 1934). The editors' notes on
Chapters II-XI in that edition have not lost their appropriateness

and are reproduced below in almost complete form.

TI. VARIATION IN AEROSTAT VOLUME

Section 56. In accordance with the international standard
atmosphere, this gradient is 6.5 C per 1,000 meters,

TV. CERTAIN CONDITIONS WHICH MUST BE SATISFIED BY
ANY DIRIGIBLE

Section 118a. Today the bows of airships do not taper to a
point, but are rounded (slightly blunted, thickened ) in accordance

with the requirements of aerodynamics. ‘Cf. section 350.

V. BRIEF DESCRIPTION OF A METAL ATRSHIP

Sections 125, 126. Subsequently, as will be clear from the
material that follows, the author arrived at a slightly different

solution of these problems.

Section 135. Subsequently, the author gave up displacing the
gondola longitudinally, and proposed nonuniform tensioning of the
envelope as a means of controlling the static moment. XK. E.
[Tsiolkovskiy] also suggested placing the control surfaces in the

propeller wake.
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VI. THE SHAPE OF A DIRIGIBLE

Section 138. This type of internal suspension suggested by
Tsiolkovskiy has now won widespread favor among designers of non-
rigid and semi-rigid dirigibles, but without Tsiolkovskiy's recelving
due credit and acknowledgement.

Sections 14Lk-147., Description of an experimental investiga-
tion of airship cross sections, published earlier in Tsiolkovskiy's
book "The Metal Dirigible,” 2nd Ed., Kaluga, 1893.

Section 171. The same integration may be carried out in the
usual manner.

VII. THE CORRUGATED METAL SKIN OF THE AEROSTAT STRETCHING
AND BENDING OF THE SURFACE

Section 277. The same formula may be derived by utilizing
the concept of the section modulus

Section 298. Formulas (299) and (300) are approximate.

Sections 301-304, Here the very cautious assumption is made
that the elastic limit K of the material is simultanedusly the
e

stability limit of the corrugated envelope in bending.
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1X. PRESSURE OF GAS ON CROSS SECTION OF AEROSTAT.
CENTER OF PRESSURE

Section 455. Above, y was used to denote not the radius,
but the ordinate of the cross section.

¥X. A SURVEY OF THE PRINCIPAL FORCES ACTING ON THE
ENVELOPE -OF THE AEROSTAT; THEIR RETATIONSHIPS

Section 501. Here, in equations (181) and (182), in place of

Yy and y ., we introduce the expressions y =h +y_ and y =
max min max 3 min

XI. MODIFICATIONS OF THE COMPONENTS OF
A METAL AIRSHIP

Section 541. This problem was solved by the author elsewhere,
in his "A Proposed 40-Man Metal Dirigible," which appeared in print
in 1930.

XIV. MOTION OF AN AIRSHIP

Here, and occasionally in other works, the author uses the
term "meronat" or "air boat" for s controllable airship or dirigible.

Our current knowledge of the motion of an airship is rather
broader (it should be noted that the content of the chapter " Motion
of a Dirigible" corresponds to the text of the corresponding chapter
in the 1886 manuscript, "Theory of the Aerostat," and was corrected
by the author in 1912). However, the theory postulated here 1is of
great value even now; we need only introduce certain improvements
in line with the date of modern theoretical and experimental aero-
dynamics (for example, in the investigation of flight velocities).
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The first part of Chapter XIV in "The Aerostat and the Airplane”
(in the journal Vozdukhoplavatel', No. 8, 17 (1908)), entitled
"Air Resistance,ﬁ was devoted to a study of the airplane wing. Vol. 1
of this edition does not ccntain that article.

The article "Motion of & Dirigible" is printed first, and the
numbering of the equations, as in the case of Chapter XV, begins
with No. 1., The author did not submit this article for publication,
since it required checking.

For the convenience of the reader, the notation for the
variables has been brought into agreement with that of the earlier

chapters.

XV. HEATING OF LIGHT GAS AND
AN ADJUSTMENT OF LIFT

As subsequently established by Eng. B. N. Vorob'yev, who was
entrusted with the study of the manuscripts of K. E. Tsiolkovskiy,
Konstentin Bluardovich [Tsiolkovskiy] made a note in 1932 on this
manuscript to the effect that it was not to be printed, since he
had not corrected it, even though it was of importance.

The contents of this chapter were first published after the
author's death, in "Compendium of Scientific and Engineering Works
on Dirigible Construction and Aerial Navigation" (No. 6, 1938).

The same compendium includes an article by B. N. Vorob'yev,
"On the Article by K. E. Tsiolkovskiy entitled 'Heating of a Light
Gas,' in which the author offered the following information based
on his own research,.

"The article by K. E. Tsiolkovskiy entitled 'Heating of a
Iight Gas and the Resulting Change in the Lift Force of an Aerostat,'
was written in 1908 and reviewed by the author shortly before his
death, It appears now for the first time in print. This article
originally constituted Chapter XVI of the first portion of one of
his most outstanding articles, "The Aerostat and the Airplane,”
which appeared in print in the periodical "Vozdukhoplavatel' in
the years 1905 to 1908. In this long article Tsiolkovskiy apparently
had the intention of expounding his basic positions on the design
of both the dirigible (primarily a system he himself devised) and
the airplane., However, he was not successful in getting even the T
first portion of his work, the part devoted to the dirigible, com-
pletely into print in that periodical. By the end of 1908, when
separate articles covering over two thirds of the first portion had
been printed in the journal, the board of directors of the newly
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founded All-Russian Aero-Club signed a contract with the editors of
Vozdukhoplavatel' under the terms of which the periodical was obliged
to print the proceedings of meetings of the Aero-Club, and other
materials of that organization, in return for a certain fee.

K. E. Tsiolkovskiy was duly informed that lack of space prevented
the editors from continuing publication of his article "The

Aerostat and the Airplane.”

In the same article, B. N. Vorobyev writes: "K. E.
Tsiolkovskiy attributed great significance precisely to Chapter XVI
of his work "The Aerostat and the Airplane,” referring to 1t as the
thermal calculations for his dirigible. In this connection he
wrote: '"the thermal calculations have been ready in menuscript
form for some time and are being submitted for publication by
Vozdukhoplavatel' as & continuation of my major contribution "The
Aerostat and the Airplane," But the journal became the organ of
the Aero-Club, so that the publication of my articles ceased"

(K. E. Tsiolkovskiy. History of My Dirigible. FPubl. by ASSNAT,
p. 13, 1924)."

In connection with the remark by K. E. Tsiolkovskiy in his
earlier work "A Simple Study of the Airship and its Construction”
(section 308, No. 2, 1904 ) to the effect that the "method of
heating the gas in the interior of the aerostat was suggested com-
paratively recently by Partridge,” B. N. Vorob'yev asserts in this
came article: "Only in 1908 was this important question investigated
thoroughly for the first time -- by none other than K. E. Tsiolkovskiy,
who carried out several such experiments. Neither prior to him,
nor after him, neither in our own nor in the foreign literature, has
there been such a consistent analysis of the interesting and serious
problem of the artificial heating of the gas."

This assertion of B. N. Vorob'yev's must be accepted as
fully justified. Priority in the scientific investigation of the
problem of heating the 1lifting gas in & dirigible certainly belongs
to K. E. Tsiolkovskiy.

Since the system of numbering the sections was not meintained
in the final chapters, because of the impossibility of publishing
the entire contents of "The Aerostat and the Airplane,” at that
time (1905-1908), we decided to change the section numbers 841-878
in Chapter XV, replacing them by 1-&0, respectively, particularly
since sections 858 and 859 turned out to be accidentally duplicated
in the manuscript.

Section 1. Here, as well as elsewhere in Chapter XV, the
author denotes the volume of gas in the envelope by V; Dbut in
Chapter XIV the same volume is denoted by W. We have designated
the volume U in accordance with the usage of Chapters T-VIII.
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Section 29, Cf. formula (27) in Chapter XIV.
One quarter of the total (Archimedean) 1ift force is

the total weight of all the passengers is

uly -7 )k ;
g

the ratio of these varigbles is

Section 36. This holds good for all distomic gases, e.g.,
hydrogen, nitrogen, etc., The specific heat of helium, & monatomic

gas, is slightly lower.
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5, ELEMENTARY DESIGN FOR A METAL DIRIGIBLE

This is & 1914 article. In it, Tsiolkovskiy develops (and
to & certain extent repeats) thoughts expounded in earlier writings.
Note on the description of Fig. 1. The author takes a
firm stand "against the use of fixed stabilizers.” Modern theory
on the stability of airships in flight demonstrates the expediency

of utilizing such stabilizers independently of the presence oOf
movable control surfaces.

Figure 16, blank in a 1914 brochure and distorted in the
1934 "Selected Works," has been replaced by another plate.

%, THE DESIGN OF A METAL DIRIGIBLE
TO CARRY FORTY PASSENGERS

A 1930 article. The present edition reproduces the entire
text of this 1930 article, but with some rearrangement. The
article was reprinted in its present form in the compendium
"Selected Works of K. E. Tsiolkovskiy," 1934, from which the text
for the present edition was taken.

In Chapter III, "Notes on,the Use of Table," the author's
misprints are corrected: 88LL m’ instead of 894k, and 1T, 688
instead of 17,888 (p. 17), 9751 and 19,502 instead of 9857 and
19,714 (p. 2%); the author's corrections are introduced:
12+ 2+9+ 3+ U45+6=T7T7,and 5472 becomes 5544 (p. 32).

A misprint in the author's edition is corrected in the
same table: 1746 instead of 1741 (p. 23), and some minor cor-
rections are made: 193 instead of ~01 and — 16 instead of —12
(p. 36); —20 instead of —13 (p. 37)-

At the end of Chapter V: "sequence of Practical Operations”
section 21, which was omitted by the editor in the 1934 edition,
is restored.

-

4. COMPENDIUM OF THE CORRUGATED STEEL DIRIGIBLE

The 1931 article, with drawings and descriptions reproduced
almost in their entirety; accordingly, only the drawings omitted in
the previous two articles are included in the current edition.
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The table gives a description of a number of geometrically
similar dirigibles; the envelope thickness varies from one dirigible
to another in proportion to the linear dimensions.

This table is a partial repetition of the contents of
"Table of Corrugated-Iron Dirigibles" published in 1915, and compiled
for dirigibles ranging from 10 to 300 meters in diameter and 60 to
1800 meters in length with volumes of up to 58 million cubic meters.

Modern high-strength materials render much lighter hulls
possible.

Section 17. 1In contrast to "aseronat" (air boat or lighter-
than-air craft), the author uses the term "aeronef" for airplanes
(ef. section 17, "Notes on Use of Table.").

Sections 49-51. Neturally, the author's discussion of
operating costs and the costs of materials is only of historical
interest.

5. Note

In the selection and arrangement of material from the previous-
ly published works of K. E. Tsiolkovskiy the editors of this volume
have striven to avoid repetition wherever possible. At the same
time, the present volume includes all the hitherto unpublished early
investigations and reflections which Tsiolkovskiy felt were important
in connection with dirigibles.

The editors realize that a similar compendium (albeit a
less complete one) was prepared and published during the suthor's
lifetime (ONTI, Gosmashmetizdat, Moscow, 1934). All the material
in this compendium is included in the present edition.
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A LIST OF THE WORKS OF K. E. TSTOLKOVSKIY
ON DIRIGIBLES AND THE THEORY OF AFRONAUTICS

1886

Teoriya aerostata. Teoriye i opyt aerostata, imeyushchego

v gorizontal'nom napravlenii udlinennuyu formu (Theory

and Practice for an Aerostat With an Elongated Elevation).
Manuscript.

1890

0 vozmozhnosti postroyeniya metallicheskogo aerostata
(On the Possibility of Constructing a Metal Aerostat).

Manuscript.
1892

Aerostat metallicheskiy, upravlyayemyy (The Metal
Dirigible).

1st Bd., publ. by Chertkov, Moscow.
1893

Aerostat metallicheskily, upravlyayemyy.
ond Ed., publ. by the author, Keluga.

Vozmozhen 1i metallicheskiy aerostat (Is the Metal
Aerostat Feasible).

Nauka i zhizhn' (Science and Lifs), No. 51-52, Moscow.
1896

Zheleznyy upravliyayemyy aerostat na 200 chelovek
(A 200-Man Maneuverable Iron Aerostat ).

Publ. by the author, Kaluga.
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7.

10.

11.

1897
Samostoyatel'noye gorizontal'noye dvizheniye uprav-
lyayemogo aerostata (Independent Horizontal Motion
of a Maneuverable Aerostat ).
Vestnik opytnoy fiziki (Herald of
Experimental Physics), No. 258-259, Odessa.
Separate brochure, Moscow, 1898,
1898
Prostoye izucheniye o vozdushnom korable i yego
postroyenii (A Simple Study of the Airship and Its
Construction). '
Publ. by "Obshchedostupnaya tekhnika"
(Popular Engineering), Moscow.
1900
Voprosy vozdukhoplaveniyae (Problems of Aeronautics).

Publ. by "Nauchnoye obozreniye"

(8cience Review), No. 10,
St. Petersburg. Separate
Publication , 1901.

Uspekhi vozdukhoplavaniya v XIX v. (Advances in Aero-
nautics During the 19th Century).

Publ. by "Nauchnoye obozreniye,"
No. 12, St. Petersburg.

Separate publication, 1901.
190k

Prostoye ucheniye o vozdushnom korable i yego postroyenii,
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ond Ed., supplemented. Publ. by the author, Kaluga.
1905
12. Metallicheskiy vozdushnyy korabl' (The Metal Airship).
"gnaniye i iskusstvo" (Knowledge and the Arts),
No. 9, St. Petersburg.
1905-1908
13, Aerostat i aeroplan (The Aerostat and the Airplane).
"Yozdukhoplavatel'" (Aeronaut), 1905-1908. Chapter XVI
of this work, which the author write in 1908 and entitled
"Heating of a Iight Gas and the Resulting Change in the
Iift Force of an Aerostat,” remained in MS form until
1938 when it was first published in "Nauchno-tekhnicheskiy
sbornik rabot po dirizhablestroyeniyu' (Scientific and
Technical Collection of Works on Dirigible Construction),

No. 6, 1938, publ. by "Aviatsionnaya gazeta" (Aviation
Gazette).

1910

14, Metallicheskiy meshok, izmenyayushchiy ob'yem i formu
(A Metal Envelope of Variable Volume and Shape ).

"Vsemirnoye tekhnicheskoye cbozreniye”
(World Technical Review), No. 3,

St.. Petersburg.

Separate publication by the author, Kaluga.

15. Metallicheskiy aerostat. Yego vygody 1 preimushchestva
(The Metal Aerostat. Its Merits and Advantages ).

"Vozdukhoplavatel', No. 11, St. Petersburg.

"Aero," St. Petersburg.



50k

16.

17.

18.

19.

20.

2l.

22.

1911
Zashchita seronata (Protection of the Dirigible).

Publ. by the author, Kaluge.

1913

Pervaya model' chistometallicheskogo aeronats iz vol-
nistogo zheleza (First Model of an All-Metal Dirigible
Made of Corrugated Irom).

Publ. by the author, Kaluga.
191k

Prosteyshiy proyekt metallicheskogo aeronata (A Simple
Plan for a Metal Dirigible).

Publ. by the author, Kaluga.

1915

Tablitsa dirizhabley iz volnistogo zheleza (Table of
Corrugated-Iron Dirigibles).

Publ. by the author, Kalugsa.

Dopolnitel'nyye tekhnicheskiye dannyye k postroyeniyu
metallicheskoy obolochki (Additional Technical Data on
the Construction of a Metal Envelope).

Publ. by the author, Kaluga.

Otzyv ILedentsovskogo obshchestva o moyem dirizhable
(The Attitude of the Iedentsovskiy Society toward My
Dirigible).

Publ. by the author, Kaluga.
1918

Vozdushnyy transport (Air Transport).

Publ. by the author, Kalugsa.
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ok,

25.

26.

27.

28.

29.

30.
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Gondola metallicheskogo dirizheblya i organy yego upravlen-
iya (The Gondola of the Metal Dirigible and Its Controls).

Publ. by the author, Kaluga.

192k
Istoriya moyego dirizhablya (History of My Dirigible).
"Izvestiya assotsiatsii naturalistov' (Bulletin of the

Association of Naturalists).

Supplement to No. 3, Moscow.

Chetyre sposoba nosit'sya nad sushey i vodoy (Four
Methods of Traveling Over Iand and Sea).

"Vozdukhoplavaniye" (Aeronautics), No. 6-7.
1925

Poryadok prakticheskikh rabot pri postroyke metalliches-
kogo dirigiblya (Sequence of Operations in Building a
Metal Dirigible).

"Vozdukhoplavaniye," No. L-5.

Dirizhabl' iz volnistoy stali (A Corrugated-Steel
Dirigible).

"Pekhnike i zhizn'" (Engineering and Life), No. 29.
Istoriya moyego dirizhablya.
"ogonyok," No. 1h.
1928

Novoye o moyem dirizhable 1 posledniye o nem otzyvy (New
Information and Recent Views on My Dirigible).

Publ. by the author, Kaluga.

Dirizhabl' iz volnistoy stali.

Publ. by the author, Kaluga.
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31.

32.

33.

3k,

35.

36.

57.

38.

1930
Stal'noy dirizhabl' (The Steel Dirigible).
"Aviatsiya i1 khimiya" (Aviation and Chemistry), No, L.

Proyekt metallicheskogo dirizhablya na 40 chelovek
(A Proposed 40-Man Metal Dirigible).

Publ. by the author, Kalugs.

Epokhe dirizhablestroyeniye (The Era of Dirigible
Building).

MS
1931
Dirizhabli (Tirigibles).
Publ. by the author, Keluga.

Atlas dirizhablya iz volnistoy stali (Atlas of a
Corrugated-Steel Dirigible).

Publ. by the author, Kaluga.

Metallicheskiy dirizhabl' s izmenyayushchimsya ob'-
yemom (A Variable-Volume Metal Dirigible).

"Nauka i tekhnika,” No. 61-62,

Kakim dolzhen byt' dirizhabl' (What A Dirigible Should
Be Like).

"Rabocheye izcbretatel'stvo"
(Workers' Inventions), No. 1.

Dirizhabl' -- osnova vozdushnogo transporta (The Dirigible
as the Basis of Air Transport).

"Rabocheye izobretatel'stvo,” No. 5.



29.

Lo.

L1,

Lo,

43+

L,

Ls,
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Gazy dlya dirizhabley (Gases for Dirigibles).
"Rabiocheye izobretatel'stvo,” No. 1T7.

Gazovyye vozdushnyye jkorabli ili aeronaty (Gas-Filled
Airships or Dirigibles).

"Vestnik inzhenerov i tekhnikov"
(Herald 'of Engineers and Technicians ), No. 5.
193%2
Novyy tip dirj¢hablya (A New Type of Dirigible).
"V boy za tekhniku"
(The Militant Engineer).
No. 17-18.

7nachehiye velichiny dirizhablya (The Significance of the
Size pf Dirigibles).

"Vestnik inzhenerov i tekhnikov," No. 3.

Nekotoryye poyasneniys k oscbennostyam konstruktsii
tsel'nometallicheskogo dirizhablya (Some Notes on the
Design of an All-Metal Dirigible).
"Vestnik inzhenerov i tekhnikov," No. L.
Moy dirizhebl' i stratoplan (My Dirigible and Stratoplane).
"Izvestiya VIsIK" (Bulletin of the
All-Union Central Executive Committee), 288.

Dirizhabl' i raketa protiv katastrof (The Emergency Use
of Dirigibles and Rockets).

MS

1935

Dirizhabl', stratoplan i zvezdolet kak tri stupeni
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velichayshikh dostizheniySSSR (The Dirigible, the Strato-
plane and the Astroplane as Three Stages in the Magnifi-
cent Achievements of the USSR).

"Grazhdanskaya aviatsiya" (Civil

Aviation), No. 9,

L7, Programma rabot po stal'nomu dirizhablyu (A Program of
Work on the Steel Dirigible).

Tekhnicheskiy byulleten' Dirizhablestroya
(Technical Bulletin of Dirigible Construction),
No. k.

193k

L8, Dostizheniye vysot stratostatom (High-Altitude Flights
by Stratostat).

"Grazhdanskaya aviatsiya," No. 9.

49, 1Izbrannyye trudy K. E. Tsiolkovskogo (Selected Works of
K. E. Tsiolkovskiy).

Book 1. '"Tsel'nometallicheskiy dirizhabl'"
(The All-Metal Dirigible).
Book 2. "Reaktivmyye dvizheniye"
(Reaction Propulsion)
1935
50. DPobeda geroicheskikh lyudey (The Victory of Heroic People).

"Nauka i zhizn'," No. 8 (10).

Tsiolkovskiy's last manuscripts published posthumously:

51. Poyezd dirizhabley (A Dirigible Train).
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"Na strazhe" (Sentinel), 20 Sep 1936.
Coll.: "K. Tsiolkovskiy," Publ. by

Aeroflot, 1939.

52. Aviatsiya, vozdukhoplavaniye i raketoplavaniye v XX veke

(Aviation, Aeromatucis and Rocket Flight in the
20th Century).

Same collection, 1939.
53, Dirizhabli (Dirigibles).

Same collection, 1939.
FARADAY TRANSIATIONS
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